A trigonometry problem by Veides Kasera

Geometry Level 3

What is arctan ( tan 1 5 tan 2 1 tan 2 7 ) \arctan (\tan 15^\circ \tan 21^\circ \tan 27^\circ ) in degrees?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ritabrata Roy
Oct 4, 2020

Values of sin 18 degree and sin 54 degree is used and can be found in any standard list.

Writing it in LaTeX \LaTeX , where I'm pretty sure it will benefit somebody:


We know, 1 2 + 5 1 4 = 5 + 1 4 \frac12 + \frac{\sqrt5-1}4 = \frac{\sqrt5+1}4

( 1 ) sin 3 0 + sin 1 8 = sin 5 4 = cos 3 6 0 ( 2 ) 2 sin 2 4 cos 6 = cos 3 6 0 ( 3 ) sin 2 4 1 2 = cos 3 6 cos 6 0 ( 4 ) sin 2 4 sin 3 0 = cos 3 6 cos 6 0 ( 5 ) sin 2 4 + sin 3 0 sin 2 4 sin 3 0 = cos 3 6 + cos 6 cos 3 6 cos 6 0 ( 6 ) 2 sin 2 7 cos 3 2 sin 3 cos 2 7 = 2 cos 2 1 cos 1 5 2 sin 2 1 sin 1 5 0 ( 7 ) sin 3 cos 3 = ( sin 2 7 cos 2 7 ) ( sin 2 1 cos 2 1 ) ( sin 1 5 cos 1 5 ) 0 tan 1 [ tan 2 1 tan 2 7 tan 2 5 ] = 3 \begin{array} {l c l } (1) & \implies & \sin30^\circ + \sin18^\circ = \sin54^\circ = \cos36^\circ \\ \phantom 0 \\ (2) & \implies & 2\sin 24^\circ \cos 6^\circ = \cos36^\circ \\ \phantom 0 \\ (3) & \implies & \dfrac{\sin24^\circ}{\tfrac12} = \dfrac{\cos36^\circ}{\cos6^\circ} \\ \phantom 0 \\ (4) & \implies & \dfrac{\sin24^\circ}{\sin30^\circ} = \dfrac{\cos36^\circ}{\cos6^\circ} \\ \phantom 0 \\ (5) & \implies & \dfrac{\sin24^\circ + \sin30^\circ}{\sin24^\circ - \sin30^\circ} = \dfrac{\cos36^\circ + \cos6^\circ}{\cos36^\circ - \cos6^\circ} \\ \phantom 0 \\ (6) & \implies & \dfrac{2\sin 27^\circ \cos3^\circ}{-2\sin3^\circ \cos27^\circ} = \dfrac{2\cos21^\circ \cos15^\circ}{-2\sin21^\circ \sin15^\circ} \\ \phantom 0 \\ (7) & \implies & \dfrac{\sin3^\circ}{\cos3^\circ} = \left(\dfrac{\sin27^\circ}{\cos27^\circ} \right) \left(\dfrac{\sin21^\circ}{\cos21^\circ} \right) \left(\dfrac{\sin15^\circ}{\cos15^\circ} \right) \\ \phantom 0 \\ & \therefore & \tan^{-1} \left [\tan21^\circ \tan27^\circ \tan25^\circ \right ] = \boxed{3^\circ} \end{array}

Values of sin 1 8 \sin18^\circ and sin 5 4 \sin54^\circ degree are used and can be found in any standard list.


Raw text

Pi Han Goh - 7 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...