A calculus problem by Md Zuhair

Calculus Level 4

0 1 x 201 1 ln x d x = ln a \large \int^{1}_{0} \dfrac{x^{201}-1}{\ln x} dx = \ln a

Find the integral in closed form. Input a a .


The answer is 202.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Guilherme Niedu
Jul 31, 2017

I ( k ) = 0 1 x k 1 ln ( x ) d x \large \displaystyle I(k) = \int_0^1 \frac{x^k - 1}{\ln(x)} dx

d I ( k ) d k = 0 1 x k ln ( x ) ln ( x ) d x \large \displaystyle \frac{dI(k)}{dk} = \int_0^1 \frac{x^k \cdot \ln(x)}{\ln(x)} dx

d I ( k ) d k = 0 1 x k d x \large \displaystyle \frac{dI(k)}{dk} = \int_0^1 x^k dx

d I ( k ) d k = 1 k + 1 \large \displaystyle \frac{dI(k)}{dk} = \frac{1}{k+1}

I ( k ) = ln ( k + 1 ) + C \color{#20A900} \boxed{\large \displaystyle I(k) = \ln(k+1) + C}

Where C C is the arbitrary constant of integration. When k = 0 k=0 :

I ( 0 ) = 0 1 x 0 1 ln ( x ) d x \large \displaystyle I(0) = \int_0^1 \frac{x^0 - 1}{\ln(x)} dx

I ( 0 ) = 0 \color{#20A900} \boxed{ \large \displaystyle I(0) = 0 }

So:

I ( 0 ) = ln ( 1 ) + C = 0 \large \displaystyle I(0) = \ln(1) + C = 0

C = 0 \color{#20A900} \boxed{ \large \displaystyle C = 0 }

Thus:

I ( k ) = ln ( k + 1 ) \color{#20A900} \boxed{\large \displaystyle I(k) = \ln(k+1)}

For k = 201 k=201 :

I ( 201 ) = 0 1 x 201 1 ln ( x ) d x = ln ( 202 ) \color{#20A900} \boxed{\large \displaystyle I(201) = \int_0^1 \frac{x^{201} - 1}{\ln(x)} dx= \ln(202)} .

Thus:

a = 202 \color{#3D99F6} \boxed{\large \displaystyle a = 202}

Daniel Xiang
Feb 14, 2018

by the substitution u = ln x u = \ln x , we get

0 1 x k 1 ln x d x = 0 1 e k x x e x d x \displaystyle \int_0^1\frac{x^k -1}{\ln x}\mathrm dx = \int_0^\infty \frac{1-e^{kx}}{x}e^x\mathrm dx

which is a Frullani integral

for a function f : R R f: \mathbb{R}\rightarrow \mathbb{R} over x 0 x\geq0 and f ( ) f(\infty) exists

0 f ( a x ) f ( b x ) x d x = ( f ( ) f ( 0 ) ) ln a b \displaystyle \int_0^\infty \frac{f(ax)-f(bx)}{x}\mathrm dx = (f(\infty)-f(0))\ln\frac{a}{b}

plugging in a = 1 a = -1 , b = ( n + 1 ) b=-(n+1) , and f ( x ) = e x f(x) = e^{-x} ,

0 e x e ( k + 1 ) x u d x = ( e e 0 ) ln ( 1 n + 1 ) = ln ( n + 1 ) \displaystyle \int_0^\infty \frac{e^x-e^{(k+1)x}}{u}\mathrm dx = (e^{-\infty}-e^0)\ln(\frac{1}{n+1})=\ln(n+1)

and therefore 0 1 x 201 1 ln x d x = ln ( 202 ) \displaystyle \int_0^1\frac{x^{201} -1}{\ln x}\mathrm dx= \boxed{\ln(202)}

Eli Ross Staff
Aug 1, 2017

See @Guilherme Niedu 's nice solution.

You practice more of these types of integrals on the differentiating through the integral page.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...