toughest question i face in probability

X and Y are two chess players. The probability of X winning a particualr game against Y is 1 3 \frac 13 and probability of Y winning the game is 2 3 \frac 23 .They play a series in which rules are such that if X wins 2 consecutive games then X wins the series and Y wins the series if Y wins 4 consecutive games. They start the game and play until one of them wins the series. Following these rules, the probability of Y winning the series is P P . Then find 258 P 258P .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nicola Mignoni
Sep 22, 2018

The problem can be modelled as a Markov Chain . Let be X \mathbb{X} and Y \mathbb{Y} the two players and let be G { X , Y } G \in \{X,Y\} the random variable such that

P ( G = X ) = 1 3 P ( G = Y ) = 2 3 \displaystyle \mathbb{P}(G=X)=\frac{1}{3} \\ \displaystyle \mathbb{P}(G=Y)=\frac{2}{3}

Now, a sequence of games is a string containing X X if X \mathbb{X} wins or Y Y if Y \mathbb{Y} wins, for example

Y X Y Y X Y Y Y X Y X Y Y X Y . . . \displaystyle YXYYXYYYXYXYYXY...

Let's define s i s_i the i i th state, which is a sequence of four consecutive games. In our example s 1 = Y X Y Y s_1=YXYY . Hence, s 2 s_2 could be the string X Y Y Y XYYY or the string X Y Y X XYYX . In the example above s 2 = X Y Y X s_2=XYYX . We define S S the set of all possible states, that is

S = { Y Y Y X , Y Y X Y , Y X Y Y , Y X Y X , X Y Y Y , X Y Y X , X Y X Y , X Y X X , Y Y X X , Y Y Y Y } \displaystyle S=\{YYYX, \, YYXY, \, YXYY, \, YXYX, \, XYYY, \, XYYX, \, XYXY, \, XYXX, \, YYXX, \,YYYY \}

Notice that the 8 8 th and the 9 9 th states are the ones in which X \mathbb{X} wins, while the last is the one in which Y \mathbb{Y} wins. We can now create the stochastic matrix P = p i j \textbf{P}=p_{ij} . The order of the states follows the one of S S above, so

P = ( Q R O I ) = ( 0 2 3 0 0 0 0 0 0 1 3 0 0 0 2 3 1 3 0 0 0 0 0 0 0 0 0 2 3 1 3 0 0 0 0 0 0 0 0 0 0 0 2 3 1 3 0 0 1 3 0 0 0 0 0 0 0 0 2 3 0 2 3 0 0 0 0 0 0 1 3 0 0 0 2 3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ) \textbf{P}=\left(\begin{array}{c|c} \textbf{Q} & \textbf{R} \\\hline \textbf{O} & \textbf{I} \end{array}\right)= \left( \begin{array}{ccccccc|cc} 0 & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)

From now on we apply the usual theory of Markov chains: we evaluate N = ( I Q ) 1 \textbf{N}=(\textbf{I}-\textbf{Q})^{-1} in order to find NR \textbf{N} \textbf{R} , that is

NR = ( 6 43 21 43 16 43 9 43 10 43 24 43 10 129 35 129 28 43 61 129 20 129 16 43 2 43 7 43 34 43 6 43 21 43 16 43 9 43 10 43 24 43 ) \textbf{N} \textbf{R} = \begin{pmatrix} \frac{6}{43} & \frac{21}{43} & \frac{16}{43} \\ \frac{9}{43} & \frac{10}{43} & \frac{24}{43} \\ \frac{10}{129} & \frac{35}{129} & \frac{28}{43} \\ \frac{61}{129} & \frac{20}{129} & \frac{16}{43} \\ \frac{2}{43} & \frac{7}{43} & \frac{34}{43} \\ \frac{6}{43} & \frac{21}{43} & \frac{16}{43} \\ \frac{9}{43} & \frac{10}{43} & \frac{24}{43} \end{pmatrix}

Hence, probability P P is the sum of the n r i 3 nr_{i3} , 1 i 7 1 \leq i \leq 7 , weighted with the probability that s i s_i occurs as the first state plus the probability that s 10 = Y Y Y Y s_{10}=YYYY occurs as first state, i.e.

P = P ( s 10 ) + i = 1 7 n r 3 i P ( s i ) = 64 129 \displaystyle P=\mathbb{P}(s_{10})+\sum_{i=1}^{7} nr_{3i} \cdot \mathbb{P}(s_i)=\frac{64}{129}

Eventually

258 P = 128 \displaystyle 258P=\boxed{128}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...