Towers of Powers of 17

17 17 17 17 17 \huge\color{#E81990}{17}^{\color{#D61F06}{17}^{\color{#3D99F6}{17}^{\color{#20A900}{17}^{\color{#EC7300}{17}}}}}

Determine the last two digits of the number above.


CS solutions as well as NT solutions will be appreciated.


The answer is 77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
Apr 20, 2015

By Euler's theorem we need to determine the value of each exponent below:

17 17 ( 16 + 1 ) 17 1 ( m o d 8 ) 17 17 17 17 1 1 ( m o d 16 ) 17 17 17 17 17 1 17 ( m o d 40 ) 17 17 17 17 17 17 17 ( 21 ) 4 × 17 81 × 17 77 ( m o d 100 ) \large\begin{array}{c}&\color{#20A900}{17}^{\color{#EC7300}{17}}&\equiv\left(16+1\right)^{17}&\equiv1\pmod{\color{#D61F06}{8}}\\ \color{#3D99F6}{17}^{\color{#20A900}{17}^{\color{#EC7300}{17}}}&\equiv\color{#3D99F6}{17}^{1}&\equiv1\pmod{\color{#D61F06}{16}}\\ \color{#D61F06}{17}^{\color{#3D99F6}{17}^{\color{#20A900}{17}^{\color{#EC7300}{17}}}}&\equiv\color{#D61F06}{17}^{1}&\equiv17\pmod{\color{#D61F06}{40}}\\ \large\color{#E81990}{17}^{\color{#D61F06}{17}^{\color{#3D99F6}{17}^{\color{#20A900}{17}^{\color{#EC7300}{17}}}}}&\equiv\color{#E81990}{17}^{17}&\equiv\left(21\right)^{4}\times{17}\equiv81\times17\equiv77\pmod{100}\end{array}

NOTE:

8 = ϕ ( 16 ) = 16 × ( 1 1 2 ) \color{#D61F06}{8}=\phi(16)=16\times\left(1-\frac{1}{2}\right)

16 = ϕ ( 40 ) = 40 × ( 1 1 2 ) × ( 1 1 5 ) \color{#D61F06}{16}=\phi(40)=40\times\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{5}\right)

40 = ϕ ( 100 ) = 100 × ( 1 1 2 ) × ( 1 1 5 ) \color{#D61F06}{40}=\phi(100)=100\times\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{5}\right)

Chew-Seong Cheong
Apr 15, 2015

Checking for the last two digits of the 1 7 n 17^n , for n [ 0 , 99 ] n \in [0,99] , shows that they repeat in a cycle of 20 20 . And by induction, the pattern is true for all n n .

It can be seen that 1 7 n 1 7 n mod 20 ( m o d 100 ) 17^n \equiv 17^{n \text{ mod 20}} \pmod{100} according to the table below:

We note that 1 7 17 77 ( m o d 100 ) 17^{17} \equiv 77 \pmod{100} and since 77 17 ( m o d 20 ) 77 \equiv 17 \pmod{20}

1 7 1 7 1 7 1 7 17 1 7 1 7 1 7 77 ( m o d 100 ) 1 7 1 7 77 ( m o d 100 ) 1 7 77 ( m o d 100 ) \Rightarrow 17^{17^{17^{17^{17}}}} \equiv 17^{17^{17^{77\pmod{100}}}} \equiv 17^{17^{77\pmod{100}}} \equiv 17^{77\pmod{100}}

77 ( m o d 100 ) \quad \quad \quad \quad \quad \equiv \boxed{77} \pmod{100}

Moderator note:

Your solution has been marked wrong. Note that you should be careful with your position of m o d 100 \bmod{100} . You should be working from the bottom to the top: with gcd ( a , c ) = 1 \text{gcd}(a,c) = 1 , a a a . . . m o d c = a a a . . . m o d ϕ ( c ) m o d c a^{a^{a^{...}}} \bmod c = a^{a^{a^{...}} \bmod {\phi(c)}} \bmod c .

It should be 1 7 1 7 1 7 1 7 17 ( m o d 100 ) 1 7 1 7 1 7 1 7 17 m o d 20 ( m o d 100 ) 17^{17^{17^{17^{17}}}} \pmod{100} \equiv 17^{17^{17^{17^{17}}} \bmod{20}} \pmod{100} \equiv \ldots

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...