Trace II

Algebra Level 3

Let V \mathcal V be the vector space of n × n n\times n matrices with trace zero. Any A V A\in\mathcal V yields a linear transformation T A T_A on V \mathcal V defined by T A ( X ) = A X X A . T_A(X)=AX-XA. Prove that bilinear forms on V \mathcal V B 1 ( X , Y ) = n tr ( X Y ) B_1(X,Y)=n\operatorname{tr}(XY) and B 2 ( X , Y ) = tr ( T X T Y ) B_2(X,Y)=\operatorname{tr}(T_X T_Y) are proportional, that is, there exists a constant λ \lambda such that B 1 ( X , Y ) = λ B 2 ( X , Y ) B_1(X,Y)=\lambda B_2(X,Y) for all X , Y V . X,Y\in\mathcal V. Find such constant λ . \lambda.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 30, 2019

We have T A T B ( X ) = A B X A X B B X A + X B A T_AT_B(X) \; = \; ABX - AXB - BXA + XBA so, using the summation convention ( T A T B ( X ) ) u v = A u r B r s X s v A u r X r s B s v B u r X r s A s v + X u r B r s A s v \big(T_AT_B(X)\big)_{uv} \; = \; A_{ur}B_{rs}X_{sv} - A_{ur}X_{rs}B_{sv} - B_{ur}X_{rs}A_{sv} + X_{ur}B_{rs}A_{sv} If X = E ( i , j ) X = E(i,j) is the matrix with 1 1 in the ( i , j ) (i,j) th position, and 0 0 everywhere else, then X r s = δ r i δ s j X_{rs} = \delta_{ri}\delta_{sj} , and hence ( T A T B E ( i , j ) ) u , v = A u r B r i δ v j A u i B j v B u i A j v + δ u i B j s A s v \big(T_AT_BE(i,j)\big)_{u,v} \; = \; A_{ur}B_{ri}\delta_{vj} - A_{ui}B_{jv} - B_{ui}A_{jv} + \delta_{ui}B_{js}A_{sv} Thus, still using the summation convention, B 2 ( A , B ) = ( T A T B E ( i , j ) ) i , j = A i r B r i δ j j A i i B j j B i i A j j + δ i i B j s A s j = 2 n A i j B j i 2 A i i B j j = 2 n T r ( A B ) 2 T r ( A ) T r ( B ) = 2 B 1 ( A , B ) 2 T r ( A ) T r ( B ) = 2 B 1 ( A , B ) \begin{aligned} B_2(A,B) & = \; \big(T_AT_BE(i,j)\big)_{i,j} \\ & = \; A_{ir}B_{ri}\delta_{jj} - A_{ii}B_{jj} - B_{ii}A_{jj} + \delta_{ii}B_{js}A_{sj} \\ & = \; 2nA_{ij}B_{ji} - 2A_{ii}B_{jj} \; = \; 2n\mathrm{Tr}(AB) - 2\mathrm{Tr}(A)\mathrm{Tr}(B) \\ & = \; 2B_1(A,B) - 2\mathrm{Tr}(A)\mathrm{Tr}(B) \; = \; 2B_1(A,B) \end{aligned} for all A , B V A,B \in \mathcal{V} , so that λ = 1 2 \lambda = \boxed{\tfrac12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...