Trace matters!

Algebra Level 3

Let A A be an n × n n\times n matrix with non-zero real eigenvalues. Suppose that

T r ( A 2 ) = T r ( A 3 ) = T r ( A 4 ) Tr(A^2)=Tr(A^3)=Tr(A^4)

Then T r ( A ) = ? Tr(A)=?

T r ( A ) Tr(A) denotes the trace of the matrix A A .

n n n -n 1 0 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aravind Vishnu
Jun 28, 2019

Given T r ( A 2 ) = T r ( A 3 ) = T r ( A 4 ) Tr(A^2)=Tr(A^3)=Tr(A^4) . Suppose ( λ 1 , λ 2 λ n ) (\lambda_1,\lambda_2\ldots\lambda_n) be the eigenvalues of A A .

Condition implies k = 1 n λ k 2 = k = 1 n λ k 3 = k = 1 n λ k 4 \sum\limits_{k=1}^{n}\lambda_k^2=\sum\limits_{k=1}^{n}\lambda_k^3=\sum\limits_{k=1}^{n}\lambda_k^4 .

Consider the vectors x 1 = ( λ 1 , λ 2 λ n ) x_1=(\lambda_1,\lambda_2\ldots\lambda_n) and x 2 = ( λ 1 2 , λ 2 2 λ n 2 ) x_2=( \lambda_1^2,\lambda_2^2\ldots\lambda_n^2) .

We have x 1 , x 2 2 = ( k = 1 n λ k 3 ) 2 |\langle x_1, x_2\rangle|^2=\left(\sum\limits_{k=1}^{n}\lambda_k^3\right)^2

also, x 1 , x 1 = x 1 2 = k = 1 n λ k 2 = k = 1 n λ k 3 \langle x_1, x_1\rangle=||x_1||^2=\sum\limits_{k=1}^{n}\lambda_k^2=\sum\limits_{k=1}^{n}\lambda_k^3

and x 2 , x 2 = x 2 2 = k = 1 n λ k 4 = k = 1 n λ k 3 \langle x_2, x_2\rangle=||x_2||^2=\sum\limits_{k=1}^{n}\lambda_k^4=\sum\limits_{k=1}^{n}\lambda_k^3

Now we have x 1 , x 2 2 = x 1 , x 1 x 2 , x 2 |\langle x_1, x_2\rangle|^2=\langle x_1, x_1\rangle\cdot\langle x_2, x_2\rangle

This is the case of equality in Cauchy-Schwarz inequality and hence we can conclude x 2 = k x 1 x_2=k\cdot x_1 for some scalar k k .

i.e., ( λ 1 2 , λ 2 2 λ n 2 ) = k ( λ 1 , λ 2 λ n ) (\lambda_1^2,\lambda_2^2\ldots\lambda_n^2)=k\cdot (\lambda_1,\lambda_2\ldots\lambda_n) .

for each λ j \lambda_j , we have λ j 2 = k λ j \lambda_j^2=k\lambda_j . Since λ j 0 0 j n \lambda_j\neq 0 \,\forall \, 0\leq j\leq n , λ j = k \lambda_j=k for all 0 j n 0\leq j\leq n

Again since we have k = 1 n λ k 2 = k = 1 n λ k 3 = k = 1 n λ k 4 n k 2 = n k 3 = n k 4 k = 1 \sum\limits_{k=1}^{n}\lambda_k^2=\sum\limits_{k=1}^{n}\lambda_k^3=\sum\limits_{k=1}^{n}\lambda_k^4\implies nk^2=nk^3=nk^4\implies k=1 .

Hence k = 1 n λ k = n \sum\limits_{k=1}^{n}\lambda_k=n

+1, that is a brilliant proof that all the eigenvalues are 1(or 0).

Aareyan Manzoor - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...