Trailing Digits #1

What are the last two digits of 2 5 293864 25^{293864} ?

Bonus: What are the last four digits?

45 45 25 25 15 15 05 05 75 75 35 35

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
May 19, 2021

In fact all positive integer powers of 25 25 end in the digits 25 25 . This is easy to prove by induction; say 2 5 k 25 ( m o d 100 ) 25^k \equiv 25 \pmod{100}

(which clearly holds for k = 1 k=1 ). Then 2 5 k + 1 25 × 25 = 625 25 ( m o d 100 ) 25^{k+1} \equiv 25\times 25 = 625 \equiv 25 \pmod{100}

which proves the claim.

Chew-Seong Cheong
May 18, 2021

We can use the Chinese remainder theorem to solve the problem. Let us consider the last three digits of 2 5 293864 25^{293864} . Note that 1000 = 2 3 × 5 3 = 8 × 125 1000 = 2^3 \times 5^3 = 8 \times 125 . Then we have:

2 5 293864 0 ( m o d 125 ) 2 5 293864 ( 24 + 1 ) 293864 1 ( m o d 8 ) 2 5 293864 8 n + 1 where n is an integer. 8 n + 1 0 ( m o d 125 ) n 78 2 5 293864 8 ( 78 ) + 1 625 ( m o d 1000 ) 2 5 293864 25 ( m o d 100 ) \begin{aligned} 25^{293864} & \equiv 0 \pmod {125} \\ 25^{293864} & \equiv (24+1)^{293864} \equiv 1 \pmod 8 \\ \implies 25^{293864} & \equiv 8 \blue n + 1 & \small \blue{\text{where }n \text{ is an integer.}} \\ 8n + 1 & \equiv 0 \pmod {125} \\ \implies n & \equiv 78 \\ 25^{293864} & \equiv 8(78)+1 \equiv 625 \pmod {1000} \\ \implies 25^{293864} & \equiv \boxed{25} \pmod {100} \end{aligned}

Well this is how I did it! @Agent T

SRIJAN Singh - 3 weeks, 3 days ago

Log in to reply

Okay!


Agent T - 3 weeks, 3 days ago

Nice solution @Chew-Seong Cheong sir!

Agent T - 3 weeks, 3 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...