Transcendental function #1

Calculus Level 5

It's been proven that

2 2 2 = 2 \sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\cdots}}}=2

Then how about numbers other than 2 2 ?

1 . 3 3 3 = 3 2 . 3 3 3 3 3 3 = 3 4 . 4 4 4 4 4 4 = 2 8 . 2.25 3 2.25 3 2.25 3 = 1.5 16 . 6.25 5 6.25 5 6.25 5 = 2.5 32 . 12.25 7 12.25 7 12.25 7 = 3.5 64 . 51.53632 11 51.53632 11 51.53632 11 = 2.2 \begin{aligned} \boxed{1}.\quad&\sqrt{3}^{\sqrt{3}^{\sqrt{3}^{\cdots}}}=3 \\ \boxed{2}.\quad&\sqrt[3]{3}^{\sqrt[3]{3}^{\sqrt[3]{3}^{\cdots}}}=\sqrt{3} \\ \boxed{4}. \quad&\sqrt[4]{4}^{\sqrt[4]{4}^{\sqrt[4]{4}^{\cdots}}}=2 \\ \boxed{8}. \quad&\sqrt[3]{2.25}^{\sqrt[3]{2.25}^{\sqrt[3]{2.25}^{\cdots}}}=1.5 \\ \boxed{16}. \quad&\sqrt[5]{6.25}^{\sqrt[5]{6.25}^{\sqrt[5]{6.25}^{\cdots}}}=2.5 \\ \boxed{32}. \quad&\sqrt[7]{12.25}^{\sqrt[7]{12.25}^{\sqrt[7]{12.25}^{\cdots}}}=3.5 \\ \boxed{64}. \quad&\sqrt[11]{51.53632}^{\sqrt[11]{51.53632}^{\sqrt[11]{51.53632}^{\cdots}}}=2.2 \end{aligned}

Add up all the numbers of the true statements, and submit that as your answer.


If you think there is no correct statement, submit 0 0 as your answer.

Note: 2 2 5 = 5153632 22^5=5153632 .


The answer is 92.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Jun 13, 2017

Euler showed that lim n x x x n times \displaystyle \lim_{n \ \to \ \infty} \underbrace{x^{x^{\cdot ^{\cdot ^{x}}}}}_{\text{n times}} converges for 1 e e x e 1 e \displaystyle \large \frac{1}{e^e} \leq x \leq e^{\frac1e} , which bounds y = x x x n times \displaystyle \large y = \underbrace{x^{x^{\cdot ^{\cdot ^{x}}}}}_{\text{n times}} to 1 e y e \displaystyle \large \frac 1e \leq y \leq e . The limit, should it exist, is a positive real solution of the equation y = x y \large y = x^y . Thus, x = y 1 y \large x = y^{\frac 1y} .

The limit defining the infinite tetration of x \large x fails to converge for x > e 1 e \large x > e^{\frac1e} because the maximum of y \large y is e \large e . Thus, we can rule out 1 \boxed{1} and 32 \boxed{32} .

2 \displaystyle \boxed{2} is not a solution to y = x y \displaystyle \large y = x^y :

3 3 3 = 3 3 3 = 3 1 3 = 3 3 3 \displaystyle \begin{aligned} \sqrt[3]{3}^{\sqrt{3}} = 3^{\frac{\sqrt{3}}{3}} = 3^{\frac{1}{\sqrt{3}}} = \sqrt[\sqrt{3}]{3} \neq \sqrt{3} \\ \\ \\ \end{aligned}

The rest converge given that they are solutions to y = x y \displaystyle \large y = x^y .

4 : \displaystyle \boxed{4} \ :

4 4 4 4 4 4 = 2 4 4 2 = 2 4 2 4 = 4 1 2 4 = 2 \displaystyle \begin{aligned} \sqrt[4]{4}^{\sqrt[4]{4}^{\sqrt[4]{4}^{\cdots}}} & = 2 \\ \sqrt[4]{4} ^{\ 2} & = 2 & \ \ \ \small \color{#3D99F6} 4^{\frac 24} = 4^{\frac12} \\ \sqrt{4} & = 2 \end{aligned}

8 : \displaystyle \boxed{8} \ :

2.25 3 2.25 3 2.25 3 = 1.5 2.25 3 1.5 = 1.5 2.2 5 1.5 3 = 2.2 5 1 2 2.25 = 1.5 \displaystyle \begin{aligned} \sqrt[3]{2.25}^{\sqrt[3]{2.25}^{\sqrt[3]{2.25}^{\cdots}}} & = 1.5 \\ \sqrt[3]{2.25} ^{\ 1.5} & = 1.5 & \ \ \ \small \color{#3D99F6} 2.25^{\frac{1.5}{3}} = 2.25^{\frac12} \\ \sqrt{2.25} & = 1.5 \end{aligned}

16 : \displaystyle \boxed{16} \ :

6.25 5 6.25 5 6.25 5 = 2.5 6.25 5 2.5 = 2.5 6.2 5 2.5 5 = 6.2 5 1 2 6.25 = 2.5 \displaystyle \begin{aligned} \sqrt[5]{6.25}^{\sqrt[5]{6.25}^{\sqrt[5]{6.25}^{\cdots}}} & = 2.5 \\ \sqrt[5]{6.25} ^{\ 2.5} & = 2.5 & \ \ \ \small \color{#3D99F6} 6.25^{\frac{2.5}{5}} = 6.25^{\frac12} \\ \sqrt{6.25} & = 2.5 \end{aligned}

64 : \displaystyle \boxed{64} \ :

51.53632 11 51.53632 11 51.53632 11 = 2.2 51.53632 11 2.2 = 2.2 51.5363 2 2.2 11 = 51.5363 2 1 5 51.53632 5 = 2.2 \displaystyle \begin{aligned} \sqrt[11]{51.53632}^{\sqrt[11]{51.53632}^{\sqrt[11]{51.53632}^{\cdots}}} & = 2.2 \\ \sqrt[11]{51.53632} ^{\ 2.2} & = 2.2 & \small \color{#3D99F6} 51.53632^{\frac{2.2}{11}} = 51.53632^{\frac15} \\ \sqrt[5]{51.53632} & = 2.2 \\ \\ \\ \\ \end{aligned}

Hence, our answer is 4 + 8 + 16 + 64 = 92 \displaystyle 4 + 8 + 16 + 64 = 92 .

For statement numbered 32 :

12.2 5 3.5 / 7 = 3.5 12.25^{3.5/7} = 3.5

12.25 = 3.5 \sqrt{12.25}= 3.5

Aakash Khandelwal - 3 years, 11 months ago

Log in to reply

Sorry for comment I understood

Aakash Khandelwal - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...