Transitive closure

A transitive closure of a binary relation R R on a set X X is the transitive relation R + R^{+} on set X X such that R + R^{+} contains R R and R + R^{+} is minimal.

What is the time complexity of computing the transitive closure of a binary relation on a set of n n elements?

O ( n ) O(n) O ( n log n ) O(n\log n) O ( n 2 ) O(n^{2}) O ( n 3 ) O(n^3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...