Trapezoid Area

Geometry Level 2

In trapezoid A B C D ABCD the two diagonals A C AC and B D BD intersect at point E E . If B E = 3 , C E = 5 , D E = 4 \overline{BE} = 3 , \overline{CE} = 5, \overline{DE} = 4 , and B E C = 3 0 \angle BEC = 30^{\circ} , then the area of the trapezoid can be written as a b \dfrac{a}{b} for coprime positive integers a a and b b . Enter the value of the sum a + b a+b .


The answer is 261.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We note that A B E \triangle ABE and C D E \triangle CDE are similar. Then A E B E = C E D E A E = C E D E × B E = 5 4 × 3 = 15 4 \dfrac {AE}{BE} = \dfrac {CE}{DE} \implies AE = \dfrac {CE}{DE} \times BE = \dfrac 54 \times 3 = \dfrac {15}4 . The area of trapezoid A B C D ABCD is

[ A B C D ] = 1 2 A E B E sin A E B + 1 2 D E A E sin D E A + 1 2 C E D E sin C E D + 1 2 B E C E sin B E C = 1 2 15 4 3 sin 15 0 + 1 2 4 15 4 sin 3 0 + 1 2 5 4 sin 15 0 + 1 2 3 5 sin 3 0 = 45 16 + 15 4 + 5 + 15 4 = 245 16 \begin{aligned} [ABCD] & = \frac 12 AE \cdot BE \sin \angle AEB + \frac 12 DE \cdot AE \sin \angle DEA + \frac 12 CE \cdot DE \sin \angle CED + \frac 12 BE \cdot CE \sin \angle BEC \\ & = \frac 12 \cdot \frac {15}4 \cdot 3 \cdot \sin 150^\circ + \frac 12 \cdot 4 \cdot \frac {15}4 \cdot \sin 30^\circ + \frac 12 \cdot 5 \cdot 4 \cdot \sin 150^\circ + \frac 12 \cdot 3 \cdot 5 \cdot \sin 30^\circ \\ & = \frac {45}{16} + \frac {15}4 + 5 + \frac {15}4 \\ & = \frac {245}{16} \end{aligned}

Therefore a + b = 245 + 16 = 261 a+b = 245+16 = \boxed{261} .

From the given informations we have

A B = 3 4 C D |\overline {AB}|=\dfrac 34 |\overline {CD}| ,

tan B A C = 2 5 + 2 3 \tan \angle {BAC}=\dfrac {2}{5+2\sqrt 3}

Using these we get the height of the trapezoid as h = 35 2 41 + 20 3 h=\dfrac {35}{2\sqrt {41+20\sqrt 3}} ,

and A B + C D = 7 4 × 41 + 20 3 |\overline {AB}|+|\overline {CD}|=\dfrac 74 \times \sqrt {41+20\sqrt 3}

So, the required area of the trapezoid is

1 2 × 7 4 41 + 20 3 × 35 2 41 + 20 3 \dfrac 12 \times \dfrac 74 \sqrt {41+20\sqrt 3}\times \dfrac {35}{2\sqrt {41+20\sqrt 3}}

= 245 16 =\dfrac {245}{16}

So, a = 245 , b = 16 a=245,b=16 , and a + b = 245 + 16 = 261 a+b=245+16=\boxed {261} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...