Trapezoid problem

Geometry Level 3

Given Trapezoid A B C D ABCD as shown.

The trapezoid is divided into 5 5 parts horizontally with A B AB and C D CD are equally divided. The Trapezoid also divided into 5 5 parts vertically with A D AD and B C BC are devided equally. If the shaded regions K K has area 35 35 and the shaded region has area 55 55 . Determine the area of the trapezoid A B C D ABCD .


The answer is 375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let B C = a BC=a and A D = b AD=b . If we label the four horizontal division lines be B n C n B_nC_n , where n = 1 , 2 , 3 , 4 n=1,2,3,4 , and the length B n C n = a n B_nC_n = a_n . Then a n = a + n ( b a ) 5 a_n = a + \dfrac {n(b-a)}5 . Let the height of the trapezoid be h h . Then we have:

2 ( a 5 + a 1 5 2 × h 5 ) + ( a 1 5 + a 2 5 2 × h 5 ) = 35 ( 9 a + b ) h 125 + ( 7 a + 3 b ) h 250 = 35 ( 5 a + b ) h = 1750 . . . ( 1 ) \begin{aligned} 2\left(\frac {\frac a5 + \frac {a_1}5}2 \times \frac h5 \right) + \left(\frac {\frac {a_1}5 + \frac {a_2}5}2 \times \frac h5 \right) & = 35 \\ \frac {(9a+b)h}{125} + \frac {(7a+3b)h}{250} & = 35 \\ \implies (5a+b)h & = 1750 & ...(1) \end{aligned}

Similarly,

( a 3 5 + a 4 5 2 × h 5 ) + 2 ( a 4 5 + b 5 2 × h 5 ) = 55 ( 3 a + 7 b ) h 250 + ( a + 9 b ) h 125 = 55 ( a + 5 b ) h = 2750 . . . ( 2 ) \begin{aligned} \left(\frac {\frac {a_3}5 + \frac {a_4}5}2 \times \frac h5 \right) + 2\left(\frac {\frac {a_4}5 + \frac b5}2 \times \frac h5 \right) & = 55 \\ \frac {(3a+7b)h}{250} + \frac {(a+9b)h}{125} & = 55 \\ \implies (a+5b)h & = 2750 & ...(2) \end{aligned}

From ( 1 ) + ( 2 ) : 6 ( a + b ) h = 4500 (1)+(2): \ \ 6(a+b) h = 4500 , then the area of the trapezoid ( a + b ) h 2 = 4500 12 = 375 \dfrac {(a+b)h}2 = \dfrac {4500}{12} = \boxed{375} .

Let B C = a |\overline {BC}|=a , A D = b |\overline {AD}|=b and the height of the trapezoid be h h . Then 2 × 1 2 × ( a 5 + 4 a + b 25 ) × h 5 + 1 2 × ( 4 a + b 25 + 3 a + 2 b 25 ) × h 5 = 35 2\times \dfrac{1}{2}\times (\dfrac{a}{5}+\dfrac{4a+b}{25})\times \dfrac{h}{5}+\dfrac{1}{2}\times (\dfrac{4a+b}{25}+\dfrac{3a+2b}{25})\times \dfrac{h}{5}=35 or h = 250 × 35 5 ( 5 a + b ) h=\dfrac{250\times {35}}{5(5a+b)} . And 2 × 1 2 × ( b 5 + a + 4 b 25 ) × h 5 + 1 2 × ( a + 4 b 25 + 2 a + 3 b 25 ) × h 5 = 55 2\times \dfrac{1}{2}\times (\dfrac{b}{5}+\dfrac{a+4b}{25})\times \dfrac{h}{5}+\dfrac{1}{2}\times (\dfrac{a+4b}{25}+\dfrac{2a+3b}{25})\times \dfrac{h}{5}=55 or h = 250 × 55 5 ( a + 5 b ) h=\dfrac{250\times {55}}{5(a+5b)} . Therefore a = b 2 , h = 500 b a=\dfrac{b}{2}, h=\dfrac{500}{b} and the required area is 1 2 ( a + b ) h = 375 \dfrac{1}{2}(a+b)h=\boxed {375}

Same way (just about). One point - you may not want to edit this now that you've posted, but the formulas work out much neater if you let B C = 10 a BC=10a , A D = 10 b AD=10b - this eliminates almost all of the fractions. Also, once you get h ( 5 a + b ) = 1750 h(5a+b)=1750 and h ( a + 5 b ) = 2750 h(a+5b)=2750 (in your original notation), you can just add these up to get 6 h ( a + b ) = 4500 6h(a+b)=4500 .

Chris Lewis - 1 year, 4 months ago

Log in to reply

Oh, yes. Right you are.

A Former Brilliant Member - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...