Trapezoidal Rule Properties

Calculus Level pending

Consider a decaying exponential function of time.

y ( t ) = e t y(t) = e^{-t}

Suppose we use the Trapezoidal integration method to discretely model this function.

y k = y k 1 + 1 2 y ˙ k 1 Δ t + 1 2 y ˙ k Δ t y ˙ k = y k y_k = y_{k-1} + \frac{1}{2} \dot{y}_{k-1} \Delta t + \frac{1}{2} \dot{y}_k \Delta t \\ \dot{y}_k = - y_k

In the above equation, y k y_k is the present value of the function and y k 1 y_{k-1} is the previous value of the function. The simulated function is "monotonic" if y k y k 1 > 0 \frac{y_k}{y_{k-1}} > 0 , and "oscillatory" if y k y k 1 < 0 \frac{y_k}{y_{k-1}} < 0 . The function "converges" if y k y k 1 < 1 \Big| \frac{y_k}{y_{k-1}} \Big | < 1 , and "diverges" if y k y k 1 > 1 \Big| \frac{y_k}{y_{k-1}} \Big | > 1 . Different behaviors are exhibited for different values of the time step Δ t \Delta t .

Subject to the constraints y k y k 1 0 \frac{y_k}{y_{k-1}} \neq 0 and Δ t > 0 \Delta t > 0 , which types of behavior are possible?

Monotonic Convergence and Monotonic Divergence Monotonic Convergence and Oscillatory Divergence Monotonic Convergence and Oscillatory Convergence Only Monotonic Convergence

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Nov 3, 2020

y = e t y ˙ = y y = \mathrm{e}^{-t} \ \implies \dot{y} = -y y k = y k 1 + y ˙ k 1 Δ t 2 + y ˙ k Δ t 2 y_k = y_{k-1} + \frac{\dot{y}_{k-1}\Delta t}{2} + \frac{\dot{y}_{k}\Delta t}{2} y k = y k 1 y k 1 Δ t 2 y k Δ t 2 y_k = y_{k-1} - \frac{y_{k-1}\Delta t}{2} - \frac{y_{k}\Delta t}{2} y k ( 1 + 0.5 Δ t ) = y k 1 ( 1 0.5 Δ t ) y_k\left(1 + 0.5\Delta t\right) = y_{k-1}\left(1 - 0.5\Delta t\right) R = y k y k 1 = 1 0.5 Δ t 1 + 0.5 Δ t R = \frac{y_k}{y_{k-1}} = \frac{ 1 - 0.5\Delta t}{1 + 0.5\Delta t}

R R becomes negative when Δ t > 2 \Delta t >2 . So when Δ t < 2 \Delta t<2 the behaviour is monotonic and it is oscillatory otherwise. By inspection, it can also be seen that the absolute value of R R always remains below 1, which indicates convergence.

Therefore, the types of possible behaviour are 'monotonic convergence and oscillatory convergence'.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...