Trapezoidal rule

Calculus Level 5

Consider the integral I = 0 π sin 2 ( x ) d x . I = \int_0^\pi \sin^2(x) \, dx. Let E N = I T N E_N = I - T_N be the error in estimating I I using the trapezoidal rule with N N equal-sized intervals. ( T N T_N is the estimate.)

What is 100 E 100 , 100E_{100}, to three decimal places?


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 30, 2016

I = 0 π sin 2 x d x = 0 π 1 cos ( 2 x ) 2 d x = 1 2 [ x sin ( 2 x ) 2 ] 0 π = π 2 \begin{aligned} I & = \int_0^\pi \sin^2 x \space dx = \int_0^\pi \frac{1-\cos (2x)}{2} dx = \frac{1}{2} \left[x - \frac{\sin (2x)}{2} \right]_0^\pi = \frac{\pi}{2} \end{aligned}

T 100 = π 0 100 [ sin 2 0 sin 2 π 2 + k = 1 99 sin 2 ( k π 100 ) ] = π 100 k = 1 99 sin 2 ( k π 100 ) As sin x = sin ( π x ) = π 100 ( 2 k = 1 49 sin 2 ( k π 100 ) + sin 2 ( 50 π 100 ) ) = π 100 ( 2 k = 1 24 [ sin 2 ( k π 100 ) + sin 2 ( ( 50 k ) π 100 ) ] + 2 sin 2 ( 25 π 100 ) + sin 2 ( π 2 ) ) = π 100 ( 2 k = 1 24 ( sin 2 ( k π 100 ) + cos 2 ( k π 100 ) ) + 2 sin 2 ( π 4 ) + sin 2 ( π 2 ) ) = π 100 ( 2 k = 1 24 1 + 1 + 1 ) = π 100 ( 48 + 1 + 1 ) = π 2 \begin{aligned} T_{100} & = \frac{\pi - 0}{100} \left[ \frac{\sin^2 0 - \sin^2 \pi}{2} + \sum_{k=1}^{99} \sin^2 \left(\frac{k \pi}{100} \right) \right] \\ & = \frac{\pi}{100} \sum_{k=1}^{99} \sin^2 \left(\frac{k \pi}{100} \right) \quad \quad \small \color{#3D99F6}{\text{As } \sin x = \sin (\pi -x)} \\ & = \frac{\pi}{100} \left( 2 \sum_{k=1}^{49} \sin^2 \left(\frac{k \pi}{100} \right) + \sin^2 \left(\frac{50 \pi}{100} \right) \right) \\ & = \frac{\pi}{100} \left( 2 \sum_{k=1}^{24}\left[ \sin^2 \left(\frac{k \pi}{100} \right) + \sin^2 \left(\frac{(50-k) \pi}{100} \right) \right] + 2 \sin^2 \left(\frac{25 \pi}{100} \right) + \sin^2 \left(\frac{\pi}{2} \right) \right) \\ & = \frac{\pi}{100} \left( 2 \sum_{k=1}^{24}\left( \sin^2 \left(\frac{k \pi}{100} \right) + \cos^2 \left(\frac{k \pi}{100} \right) \right) + 2 \sin^2 \left(\frac{\pi}{4} \right) + \sin^2 \left(\frac{\pi}{2} \right) \right) \\ & = \frac{\pi}{100} \left( 2 \sum_{k=1}^{24} 1 + 1 + 1 \right) = \frac{\pi}{100} \left( 48 + 1 + 1 \right) = \frac{\pi}{2} \end{aligned}

E 100 = I T 100 = 0.000 \Rightarrow E_{100} = I - T_{100} = \boxed{0.000}

You seem to be saying that sin 2 x = cos 2 ( π x ) , \sin^2 x = \cos^2(\pi-x), but that is not true. Am I missing something?

Patrick Corn - 5 years, 2 months ago

Log in to reply

Sorry, you are right. I am changing the solution.

Chew-Seong Cheong - 5 years, 2 months ago
Mark Hennings
Sep 21, 2016

We have T N = π N j = 1 N 1 sin 2 ( j π N ) = π 2 N j = 0 N 1 ( 1 cos ( 2 j π N ) ) = 1 2 π π 2 N R e [ j = 0 N 1 e 2 j π i N ] = 1 2 π π 2 N R e [ e 2 π i 1 e 2 π i N 1 ] = 1 2 π \begin{array}{rcl} T_N & = & \displaystyle \frac{\pi}{N}\sum_{j=1}^{N-1} \sin^2\big(\tfrac{j \pi}{N}\big) \; =\; \frac{\pi}{2N}\sum_{j=0}^{N-1}\Big(1 - \cos\big(\tfrac{2j\pi}{N}\big)\Big) \\ & = & \displaystyle \tfrac12\pi - \frac{\pi}{2N}\mathfrak{Re}\left[\sum_{j=0}^{N-1} e^{\frac{2j\pi i}{N}}\right] \; = \; \tfrac12\pi - \frac{\pi}{2N}\mathfrak{Re}\left[\frac{e^{2\pi i} - 1}{e^{\frac{2\pi i}{N}} - 1}\right] \\ & = & \tfrac12\pi \end{array} and so, since I = 1 2 π I = \tfrac12\pi , we have E N = 0 E_N = 0 for all integers N N .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...