Trapezoids and Hexagons !

Level pending

In Trapezoid A B C D ABCD , with A B C D AB \parallel CD and A B = a + 6 , D C = a + 14 , A D = a + 2 AB = a + 6, DC = a + 14, AD = a + 2 and B C = a BC = a , angle bisectors A P AP and D P DP intersect at P P and angle bisectors B Q BQ and C Q CQ intersect at Q Q .

If the value of a a for which the area of the hexagon A A B Q C D P = a + 19 8 A_{ABQCDP} = \dfrac{a + 19}{8} can be expressed as a = α + β α a = \dfrac{-\sqrt{\alpha} + \sqrt{\beta}}{\sqrt{\alpha}} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 256.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Dec 5, 2020

h 2 = ( a + 2 ) 2 x 2 = a 2 ( 8 x ) 2 h^2 = (a + 2)^2 - x^2 = a^2 - (8 - x)^2 \implies

a 2 + 4 a + 4 x 2 = a 2 64 + 16 x x 2 a^2 + 4a + 4 - x^2 = a^2 - 64 + 16x - x^2 \implies a + 1 = 4 x 16 a + 1 = 4x - 16 \implies

x = a + 17 4 = D E F E = 15 a 4 x = \dfrac{a + 17}{4} = DE \implies FE = \dfrac{15 - a}{4} and h = 15 ( a + 5 ) ( a 3 ) 4 h = \dfrac{\sqrt{15(a + 5)(a - 3)}}{4}

A T r a p e z o i d = 1 2 ( 2 ( a + 10 ) ) 15 ( a + 5 ) ( a 3 ) 4 = ( a + 10 ) 15 ( a + 5 ) ( a 3 ) 4 \implies A_{Trapezoid} = \dfrac{1}{2}(2(a + 10))\dfrac{\sqrt{15(a + 5)(a - 3)}}{4} = \boxed{(a + 10)\dfrac{\sqrt{15(a + 5)(a - 3)}}{4}}

We want: A A B Q C D P = A T r a p e z o i d ( A B Q C + A A P D ) A_{ABQCDP} = A_{Trapezoid} - (A_{\triangle{BQC}} + A_{\triangle{APD}})

A B D C m B + m C = 18 0 AB \parallel DC \implies m\angle{B} + m\angle{C} = 180^{\circ} and m A + m D = 18 0 m\angle{A} + m\angle{D} = 180^{\circ} \implies

1 2 m B + 1 2 m C = 9 0 \dfrac{1}{2}m\angle{B} + \dfrac{1}{2}m\angle{C} = 90^{\circ} and 1 2 m A + 1 2 m D = 9 0 \dfrac{1}{2}m\angle{A} + \dfrac{1}{2}m\angle{D} = 90^{\circ}

A P D \implies \triangle{APD} and B Q C \triangle{BQC} are right triangles \implies A P D = 9 0 \angle{APD} = 90^{\circ} and B Q C = 9 0 \angle{BQC} = 90^{\circ}

For B Q C : \triangle{BQC}:

cos ( 2 λ ) = 15 a 4 a cos ( λ ) = 1 + 15 a 4 a 2 = \cos(2\lambda) = \dfrac{15 -a}{4a} \implies \cos(\lambda) = \sqrt{\dfrac{1 + \dfrac{15 - a}{4a}}{2}} = 3 ( a + 5 ) 8 a = 1 2 3 ( a + 5 ) 2 a \sqrt{\dfrac{3(a + 5)}{8a}} = \dfrac{1}{2}\sqrt{\dfrac{3(a + 5)}{2a}}

sin ( λ ) = 1 2 5 ( a 3 ) 2 a B Q = a 2 5 ( a 3 ) 2 a \implies \sin(\lambda) = \dfrac{1}{2}\sqrt{\dfrac{5(a - 3)}{2a}} \implies BQ = \dfrac{a}{2}\sqrt{\dfrac{5(a - 3)}{2a}} and Q C = a 2 3 ( a + 5 ) 2 a QC = \dfrac{a}{2}\sqrt{\dfrac{3(a + 5)}{2a}}

A B Q C = 15 ( a 3 ) ( a + 5 ) 16 a \implies \boxed{A_{\triangle{BQC}} = \dfrac{\sqrt{15(a - 3)(a + 5)}}{16}a}

For A P D : \triangle{APD}:

cos ( 2 θ ) = a + 17 4 ( a + 2 ) cos ( θ ) = 1 + a + 17 4 ( a + 2 ) 2 = \cos(2\theta) = \dfrac{a + 17}{4(a + 2)} \implies \cos(\theta) = \sqrt{\dfrac{1 + \dfrac{a + 17}{4(a + 2)}}{2}} = 5 ( a + 5 ) 8 ( a + 2 ) = \sqrt{\dfrac{5(a + 5)}{8(a + 2)}} =

1 2 5 ( a + 5 ) 2 ( a + 2 ) \dfrac{1}{2}\sqrt{\dfrac{5(a + 5)}{2(a + 2)}}

sin ( θ ) = 1 2 3 ( a 3 ) 2 ( a + 2 \implies \sin(\theta) = \dfrac{1}{2}\sqrt{\dfrac{3(a - 3)}{2(a + 2}} \implies A P = a + 2 2 3 ( a 3 ) 2 ( a + 2 AP = \dfrac{a + 2}{2}\sqrt{\dfrac{3(a - 3)}{2(a + 2}}

and D P = a + 2 2 5 ( a + 5 ) 2 ( a + 2 ) DP = \dfrac{a + 2}{2}\sqrt{\dfrac{5(a + 5)}{2(a + 2)}} \implies A A P D = 15 ( a 3 ) ( a + 5 ) 16 ( a + 2 ) \boxed{A_{\triangle{APD}} = \dfrac{\sqrt{15(a - 3)(a + 5)}}{16}(a + 2)}

A A B Q C D P = A T r a p e z o i d ( A B Q C + A A P D ) = \implies A_{ABQCDP} = A_{Trapezoid} - (A_{\triangle{BQC}} + A_{\triangle{APD}}) = a + 19 8 15 ( a 3 ) ( a + 5 ) \dfrac{a + 19}{8}\sqrt{15(a - 3)(a + 5)}

= a + 19 8 = \dfrac{a + 19}{8} \implies 15 ( a 2 + 2 a 15 ) = 1 15 a 2 + 30 a 226 = 0 15(a^2 + 2a - 15) = 1 \implies 15a^2 + 30a - 226 = 0

dropping the negative root a = 15 + 3615 15 = \implies a = \dfrac{-15 + \sqrt{3615}}{15} = 15 + 15 241 15 = \dfrac{-15 + \sqrt{15}\sqrt{241}}{15} =

15 ( 15 + 241 ) 15 = \dfrac{\sqrt{15}(-\sqrt{15} + \sqrt{241})}{15} = 15 + 241 15 = \dfrac{-\sqrt{15} + \sqrt{241}}{\sqrt{15}} =

α + β α α + β = 256 \dfrac{-\sqrt{\alpha} + \sqrt{\beta}}{\sqrt{\alpha}} \implies \alpha + \beta = \boxed{256} .

David Vreken
Dec 6, 2020

Label the diagram as follows:

Since C Q CQ is an angle bisector, B C F = 2 λ \angle BCF = 2\lambda , and from right B C F \triangle BCF , h = a sin 2 λ h = a \sin 2\lambda and F C = a 2 h 2 FC = \sqrt{a^2 - h^2} . Similarly, on right A D E \triangle ADE , h = ( a + 2 ) sin 2 θ h = (a + 2) \sin 2\theta and D E = ( a + 2 ) 2 h 2 DE = \sqrt{(a + 2)^2 - h^2} . D E + F C = D C A B = ( a + 14 ) ( a + 6 ) = 8 DE + FC = DC - AB = (a + 14) - (a + 6) = 8 , so:

( a + 2 ) 2 h 2 + a 2 h 2 = 8 \sqrt{(a + 2)^2 - h^2} + \sqrt{a^2 - h^2} = 8

The area of trapezoid A B C D ABCD is A trap = 1 2 ( a + 6 + a + 14 ) h A_{\text{trap}} = \frac{1}{2}(a + 6 + a + 14)h or A trap = ( a + 10 ) h A_{\text{trap}} = (a + 10)h .

Since A B D C AB || DC , A B C = 180 ° 2 λ \angle ABC = 180° - 2\lambda , and since BQ is an angle bisector, C B Q = 90 ° λ \angle CBQ = 90° - \lambda . Then by the angle sum of B Q C \triangle BQC , B Q C = 90 ° \angle BQC = 90° . Therefore, B Q = a sin λ BQ = a \sin \lambda and C Q = a cos λ CQ = a \cos \lambda , so that the area of B Q C \triangle BQC is T 1 = 1 2 B Q C Q = 1 2 a sin λ a cos λ = 1 4 a 2 ( 2 sin λ cos λ ) = 1 4 a 2 sin 2 λ T_1 = \frac{1}{2} \cdot BQ \cdot CQ = \frac{1}{2} \cdot a \sin \lambda \cdot a \cos \lambda = \frac{1}{4} a^2 (2 \sin \lambda \cos \lambda) = \frac{1}{4} a^2 \sin 2 \lambda which after substituting h = a sin 2 λ h = a \sin 2\lambda from above, T 1 = 1 4 a h T_1 = \frac{1}{4} ah .

By a similar argument, the area of A D E \triangle ADE is T 2 = 1 4 ( a + 2 ) h T_2 = \frac{1}{4} (a + 2)h .

The area of hexagon A B Q C D P ABQCDP is the area of the trapezoid minus the two right triangles, or A A B Q C D P = A trap T 1 T 2 = 1 8 ( a + 19 ) A_{ABQCDP} = A_{\text{trap}} - T_1 - T_2 = \frac{1}{8}(a + 19) , so that:

( a + 10 ) h 1 4 a h 1 4 ( a + 2 ) h = 1 8 ( a + 19 ) (a + 10)h - \frac{1}{4} ah - \frac{1}{4} (a + 2)h = \frac{1}{8}(a + 19)

The two equations solve to h = 1 4 h = \cfrac{1}{4} and a = 15 + 241 15 a = \cfrac{-\sqrt{15} + \sqrt{241}}{\sqrt{15}} for a > 0 a > 0 .

Therefore, α = 15 \alpha = 15 , β = 241 \beta = 241 , and α + β = 256 \alpha + \beta = \boxed{256} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...