Trapped Circles

Geometry Level 5

A B C D ABCD is an isosceles trapezoid with three equal sides. B C = C D = D A = 1 , A B = 2 BC = CD = DA = 1, AB=2 . E E is chosen so that the two black circles are congruent. If the radius of the red circle, r r , is

r = a + b + a + b c , r=\frac{-a + \sqrt b + \sqrt{a + \sqrt b}}c ,

submit a + b + c a+b+c .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions


In this solution we use the fact that, in the case where the two black incircles are congruent, the following relation holds: B F = s ( s b ) ( 1 ) BF=\sqrt{s\cdot \left( s-b \right)} \ \ \ \ \ (1) where b = C A b=CA and s s is the semiperimeter of A B C \triangle ABC .

This is problem 2.2.5 in Fukagawa, Hidetoshi, and Dan Pedhoe. 1989, Japanese temple geometry problems, Winnipeg: Charles Babbage Research Centre. In this book no solution is given, but you can find one here (problem 8).


Reffering to the figure, let C H A B CH\bot AB . Let G G be the intersection of lines C D CD and E B EB . Denote by r r and R R the radii of the red and black circles respectively.
Since H C = A B D C 2 = 1 2 = B C 2 HC=\dfrac{AB-DC}{2}=\dfrac{1}{2}=\dfrac{BC}{2} , we conclude that C B H = 60 \angle CBH=60{}^\circ .

By cosine rule on A B C \triangle ABC ,

A C 2 = A B 2 + B C 2 2 A C B C cos B = 4 + 1 2 × 2 × 1 × 1 2 = 3 A C = 3 A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}-2AC\cdot BC\cdot \cos B=4+1-2\times 2\times 1\times \dfrac{1}{2}=3\Rightarrow AC=\sqrt{3} This means that A B C \triangle ABC is a right triangle, with C = 90 \angle C=90{}^\circ .

Using proposition ( 1 ) (1) , we have B F 2 = s ( s b ) = 2 + 1 + 3 2 2 + 1 3 2 = 3 2 B F = 3 2 B{{F}^{2}}=s\left( s-b \right)=\dfrac{2+1+\sqrt{3}}{2}\cdot \dfrac{2+1-\sqrt{3}}{2}=\dfrac{3}{2}\Rightarrow BF=\sqrt{\dfrac{3}{2}} By Pythagorean Theorem on B C F \triangle BCF ,

C F 2 = B F 2 B C 2 = 3 2 1 = 1 2 C F = 2 2 C{{F}^{2}}=B{{F}^{2}}-B{{C}^{2}}=\frac{3}{2}-1=\frac{1}{2}\Rightarrow CF=\frac{\sqrt{2}}{2} Furthermore, C G F A B F \triangle CGF\sim \triangle ABF , thus,

G F F B = C F F A = G C A B { G F = F B C F F A = 3 2 2 2 3 2 2 = 6 + 6 10 G C = A B C F F A = 2 2 2 3 2 2 = 6 + 1 5 \dfrac{GF}{FB}=\dfrac{CF}{FA}=\dfrac{GC}{AB}\Rightarrow \left\{ \begin{matrix} GF=FB\cdot \dfrac{CF}{FA}=\sqrt{\dfrac{3}{2}}\cdot \dfrac{\dfrac{\sqrt{2}}{2}}{\sqrt{3}-\dfrac{\sqrt{2}}{2}}=\dfrac{6+\sqrt{6}}{10} \\ GC=AB\cdot \dfrac{CF}{FA}=2\cdot \dfrac{\dfrac{\sqrt{2}}{2}}{\sqrt{3}-\dfrac{\sqrt{2}}{2}}=\dfrac{\sqrt{6}+1}{5} \\ \end{matrix} \right. For the inradius of the right triangle B C F BCF we have

R = s B F = 1 2 ( B C + C F B F ) = 1 2 ( 1 + 2 2 3 2 ) R=s-BF=\frac{1}{2}\left( BC+CF-BF \right)=\frac{1}{2}\left( 1+\frac{\sqrt{2}}{2}-\sqrt{\frac{3}{2}} \right) Again, due to the similarity of C G F \triangle CGF and A B F \triangle ABF ,

r R = G C A B r = R G C A B = 1 2 ( 1 + 2 2 3 2 ) 6 + 1 5 2 = 1 10 ( 2 + 3 + 2 + 3 ) \dfrac{r}{R}=\dfrac{GC}{AB}\Rightarrow r=R\cdot \dfrac{GC}{AB}=\dfrac{1}{2}\left( 1+\dfrac{\sqrt{2}}{2}-\sqrt{\dfrac{3}{2}} \right)\cdot \dfrac{\dfrac{\sqrt{6}+1}{5}}{2}=\dfrac{1}{10}\left( -2+\sqrt{3}+\sqrt{2+\sqrt{3}} \right) For the answer, a = 2 a=2 , b = 3 b=3 , c = 10 c=10 , thus, a + b + c = 15 a+b+c=\boxed{15} .

Thank you for sharing the sangaku resources, Thanos. I love reading them.

Fletcher Mattox - 1 month, 1 week ago

Log in to reply

Thanks. I enjoy your return to the creative utilization of congruent incircles.

Thanos Petropoulos - 1 month, 1 week ago
David Vreken
Apr 30, 2021

Let F F be the intersection of B E BE and A C AC , and extend C D CD and B E BE to meet at G G .

Since the trapezoid is a combination of three unit equilateral triangles, A C = 2 3 2 = 3 AC = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} , and since A C 2 + B C 2 = A B 2 AC^2 + BC^2 = AB^2 , by the converse of the Pythagorean Theorem A C B \angle ACB is a right triangle.

Let k = C F k = CF . Then A F = A C C F = 3 k AF = AC - CF = \sqrt{3} - k , and by the Pythagorean Theorem, B F = C F 2 + B C 2 = k 2 + 1 BF = \sqrt{CF^2 + BC^2} = \sqrt{k^2 + 1} .

The area of A F B \triangle AFB is A A F B = 1 2 A F B C = 1 2 ( 3 k ) 1 = 1 2 ( 3 k ) A_{\triangle AFB} = \frac{1}{2} \cdot AF \cdot BC = \frac{1}{2} \cdot (\sqrt{3} - k) \cdot 1 = \frac{1}{2}(\sqrt{3} - k) , and the perimeter of A F B \triangle AFB is P A F B = A F + B F + A B = 3 k + k 2 + 1 + 2 P_{\triangle AFB} = AF + BF + AB = \sqrt{3} - k + \sqrt{k^2 + 1} + 2 .

The congruent inradii of B F C \triangle BFC and A F B \triangle AFB is R = 1 2 ( C F + B C B F ) = 2 A A F B P A F B R = \frac{1}{2}(CF + BC - BF) = \cfrac{2A_{\triangle AFB}}{P_{\triangle AFB}} , or R = 1 2 ( k + 1 k 2 + 1 ) = 3 k 3 k + k 2 + 1 + 2 R = \frac{1}{2}(k + 1 - \sqrt{k^2 + 1}) = \cfrac{\sqrt{3} - k}{\sqrt{3} - k + \sqrt{k^2 + 1} + 2} , which solves to k = 2 2 k = \frac{\sqrt{2}}{2} and R = 1 4 ( 2 + 2 6 ) R = \frac{1}{4}(2 + \sqrt{2} - \sqrt{6}) .

By alternate interior angles of parallel segments C G CG and A B AB , G C A = F B A \angle GCA = \angle FBA and C G B = A B G \angle CGB = \angle ABG , so C F G A F B \triangle CFG \sim \triangle AFB by AA similarity, which means r R = C F A F \cfrac{r}{R} = \cfrac{CF}{AF} , or r 1 4 ( 2 + 2 6 ) = 2 2 3 2 2 \cfrac{r}{\frac{1}{4}(2 + \sqrt{2} - \sqrt{6})} = \cfrac{\frac{\sqrt{2}}{2}}{3 - \frac{\sqrt{2}}{2}} , which solves to r = 2 + 3 + 2 + 3 10 r = \cfrac{-2 + \sqrt{3} + \sqrt{2 + \sqrt{3}}}{10} .

Therefore, a = 2 a = 2 , b = 3 b = 3 , c = 10 c = 10 , and a + b + c = 15 a + b + c = \boxed{15} .

I did it this way, but when it comes to the "which solves to" part, I don't have any idea which equations are possible for hand calculation and which is better to let WA doing the dirty work (hard to input the equations especially a long one on a phone, I kept deleting nearly finish typed equations because the little X got in the way).

Saya Suka - 1 month, 1 week ago
Chew-Seong Cheong
Apr 30, 2021

Let the radius of the black circles be R R and that of the red circle be r r , E B A = θ \angle EBA = \theta and A C AC and B E BE intersect at F F .. Using the fact that the line joining the incircle and a vertex of the triangle bisects the vertex angle, we have:

R cot C A B 2 + R cot E B A 2 = A B R cot 1 5 + R cot θ 2 = 2 Let t = tan θ 2 R ( 2 + 3 ) + R t = 2 R = 2 t ( 2 + 3 ) t + 1 \begin{aligned} R \cot \frac {\angle CAB}2 + R \cot \frac {\angle EBA}2 & = AB \\ R \cot 15^\circ + R \cot \frac \theta 2 & = 2 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ R(2 + \sqrt 3) + \frac Rt & = 2 \\ \implies R & = \frac {2t}{(2+\sqrt 3)t + 1} \end{aligned}

Similarly,

R cot C B E 2 + R cot A C B 2 = B C R cot ( 3 0 θ 2 ) + R cot 4 5 = 1 R ( 3 + t 1 3 t ) + R = 1 R = 1 3 t 1 + 3 + ( 1 3 ) t \begin{aligned} R \cot \frac {\angle CBE}2 + R \cot \frac {\angle ACB}2 & = BC \\ R \cot \left(30^\circ - \frac \theta 2\right) + R \cot 45^\circ & = 1 \\ R \left(\frac {\sqrt 3 + t}{1-\sqrt 3 t}\right) + R & = 1 \\ \implies R & = \frac {1-\sqrt 3 t}{1+\sqrt 3 + (1-\sqrt 3)t} \end{aligned}

Therefore

2 t ( 2 + 3 ) t + 1 = 1 3 t 1 + 3 + ( 1 3 ) t 2 ( 1 + 3 ) t + 2 ( 1 3 ) t 2 = 1 + 2 t ( 2 3 + 3 ) t 2 5 t 2 + 2 3 t 1 = 0 t = 2 2 3 5 tan θ 2 t 1 t 2 = 4 2 3 3 \begin{aligned} \frac {2t}{(2+\sqrt 3)t + 1} & = \frac {1-\sqrt 3 t}{1+\sqrt 3 + (1-\sqrt 3)t} \\ 2(1+\sqrt 3)t + 2(1-\sqrt 3)t^2 & = 1 + 2t - (2\sqrt 3 + 3)t^2 \\ 5t^2 + 2\sqrt 3t - 1 & = 0 \\ \implies t & = \frac {2\sqrt 2 - \sqrt 3}5 \\ \implies \tan \theta & - \frac {2t}{1-t^2} = 4\sqrt 2 - 3\sqrt 3 \end{aligned}

Similarly for the red circle,

r cot E F C 2 + r cot D C F 2 = F C r cot ( 7 5 θ 2 ) + r cot 1 5 = tan ( 6 0 θ ) r ( 2 3 + t 1 ( 2 3 ) t + 2 + 3 ) = 3 4 2 + 3 3 1 + 3 ( 4 2 3 3 ) 4 r 1 ( 2 3 ) t = 1 2 r = 1 ( 2 3 ) t 4 2 = 5 ( 2 3 ) ( 2 2 3 ) 20 2 = 1 2 2 + 3 + 6 10 2 = 2 + 3 10 + 1 10 1 + 3 2 = 2 + 3 10 + 1 10 ( 1 + 3 2 ) 2 = 2 + 3 + 2 + 3 10 \begin{aligned} r \cot \frac {\angle EFC}2 + r \cot \frac {\angle DCF}2 & = FC \\ r \cot \left(75^\circ - \frac \theta 2\right) + r \cot 15^\circ & = \tan (60^\circ - \theta) \\ r \left(\frac {2-\sqrt 3 + t}{1-(2-\sqrt 3)t} + 2 + \sqrt 3 \right) & = \frac {\sqrt 3 - 4\sqrt 2 + 3\sqrt 3}{1+\sqrt 3(4\sqrt 2 - 3\sqrt 3)} \\ \frac {4r}{1-(2-\sqrt 3)t} & = \frac 1{\sqrt 2} \\ \implies r & = \frac {1-(2-\sqrt 3)t}{4\sqrt 2} \\ & = \frac {5-(2-\sqrt 3)(2\sqrt 2 - \sqrt 3)}{20\sqrt 2} \\ & = \frac {1-2\sqrt 2 + \sqrt 3 + \sqrt 6}{10\sqrt 2} \\ & = \frac {-2+\sqrt 3}{10} + \frac 1{10} \cdot \frac {1+\sqrt 3}{\sqrt 2} \\ & = \frac {-2+\sqrt 3}{10} + \frac 1{10} \sqrt{\left(\frac {1+\sqrt 3}{\sqrt 2}\right)^2} \\ & = \frac {-2+\sqrt 3 + \sqrt{2+\sqrt 3}}{10} \end{aligned}

Therefore (a+b+c = 2+3+10 = \boxed {15}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...