Trapped in a Pentagon

Geometry Level 4

The figure shows a square trapped in a regular pentagon of side length 1, symmetrically touching the pentagon at 3 points.

What is the distance between the lowest point of the square and the base of the pentagon?

The answer is of the form 1 2 A 2 5 5 \dfrac{1}{2}\sqrt{A-2\sqrt{5}}-\sqrt{5} .

Submit your answer as the value of A A .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A B = 1. A C , s i d e o f t h e s q u a r e , = s . D i s t h e l o w e s t p o i n t . A D , d i a g o n a l o f t h e s q u a r e , = d . H e i g h t o f t h e p e n t a g o n = h . D E , t h e r e q u i r e d d i s t a n c e , = h d = x . . . . . . . . . . . ( 1 ) E A B = 5 4 o . D A C = 4 5 o . r C A B = 9 o . I n A S A Δ C A B , u s i n g S i n L a w , s = 1 / S i n 63 S i n 108 S o d = s 2 . . . . . . . . . . . ( 2 ) h = 1 / 2 1 ( C o t 36 + C s c 36 ) . . . . . . . . . . ( 3 ) F r o m ( 1 ) x = h d = 1 / 2 A 2 5 5 . a s g i v e n . A = ( ( h d ) + 2 5 ) 2 + 2 5 . S u b s t i t u t i n g v a l u e s f r o m ( 3 ) a n d ( 2 ) , A = { C o t 36 + C s c 36 2 2 S i n 108 S i n 63 + 2 5 } 2 + 2 5 = 25. AB=1. ~~AC,~side~of~the~square,~=~s.~~D~is~the~lowest~point.~~AD,diagonal~of ~the~square,~=~d.\\ Height~of~the~pentagon~=~h.~~DE, ~the~required~distance,~=~h-d=x...........(1) \\ \angle~EAB=54^o.~~\angle~DAC=45^o.r~~\therefore~\angle~CAB=9^o.\\ In~ASA~\Delta~CAB,~using~Sin~Law,~~s=1/Sin63*Sin108~~~~~So~d~=~s*\sqrt2...........(2)\\ h=1/2*1*(Cot36+Csc36)..........(3)\\ From~(1)~~~~~x~=h-d= 1/2*\sqrt{A-2\sqrt5}-\sqrt5.~as~given.\\ \therefore~A=\left ((h-d)+ 2*\sqrt5 \right )^2+2*\sqrt5.\\ Substituting~values~from~(3)~and~(2),\\ A~=~\left \{Cot36+Csc36~~~-~~~ 2* \dfrac{\sqrt2*Sin108}{Sin63}~~~+~~~2*\sqrt5 \right \}^2~~~+~~~2*\sqrt5\\ ~~=\Large \color{#D61F06}{25}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...