Traversing Circles

Geometry Level 5

In the isosceles right triangle A B C \bigtriangleup ABC with two legs both of a unit length, points D D and E E are selected, such that A E \overline{AE} and D C \overline{DC} form two congruent orange circles and two congruent blue circles.

If the radius of the blue circle is r r , input 1 0 6 r \lfloor 10^6 r\rfloor as your answer.


The answer is 100644.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Apr 2, 2021

Place the whole diagram on a coordinate plane so that B B is at the origin, A A is at A ( 0 , 1 ) A(0, 1) , and C C is at C ( 1 , 0 ) C(1, 0) , and let F F be the intersection of A E AE and D C DC at F ( k , k ) F(k, k) . Also, let M M be the midpoint of A C AC at M ( 1 2 , 1 2 ) M(\frac{1}{2}, \frac{1}{2}) .

Then A F AF has the equation y = k 1 k x + 1 y = \frac{k - 1}{k}x + 1 and an x x -intercept of E ( k 1 k , 0 ) E(\frac{k}{1 - k}, 0) .

By the distance equation, A E = 1 + k 2 ( 1 k ) 2 AE = \sqrt{1 + \frac{k^2}{(1 - k)^2}} , A F = F C = k 2 + ( k 1 ) 2 AF = FC = \sqrt{k^2 + (k - 1)^2} , D F = F E = k 2 + ( k k 1 k ) 2 DF = FE = \sqrt{k^2 + (k - \frac{k}{1 - k})^2} , F M = ( 1 2 k ) 2 FM = (\frac{1}{2} - k)\sqrt{2} , and A C = 2 AC = \sqrt{2} .

The inradius of right A B E \triangle ABE is R = 1 2 ( A B + B E A E ) = 1 2 ( 1 + k 1 k 1 + k 2 ( 1 k ) 2 ) R = \frac{1}{2}(AB + BE - AE) = \frac{1}{2}(1 + \frac{k}{1 - k} - \sqrt{1 + \frac{k^2}{(1 - k)^2}}) .

The inradius of A F C \triangle AFC is R = 2 A A F C P A F C = 2 1 2 A C F M A F + F C + A C = 2 ( 1 2 k ) 2 2 k 2 + ( k 1 ) 2 + 2 R = \cfrac{2A_{\triangle AFC}}{P_{\triangle AFC}} = \cfrac{2 \cdot \frac{1}{2} \cdot AC \cdot FM}{AF + FC + AC} = \cfrac{\sqrt{2} \cdot (\frac{1}{2} - k)\sqrt{2}}{2\sqrt{k^2 + (k - 1)^2} + \sqrt{2}}

Therefore, R = 1 2 ( 1 + k 1 k 1 + k 2 ( 1 k ) 2 ) = 2 ( 1 2 k ) 2 2 k 2 + ( k 1 ) 2 + 2 R = \frac{1}{2}(1 + \frac{k}{1 - k} - \sqrt{1 + \frac{k^2}{(1 - k)^2}}) = \cfrac{\sqrt{2} \cdot (\frac{1}{2} - k)\sqrt{2}}{2\sqrt{k^2 + (k - 1)^2} + \sqrt{2}} , which solves to k = 1 4 ( 2 2 ( 2 1 ) ) k = \frac{1}{4}(2 - \sqrt{2(\sqrt{2} - 1)}) .

The inradius of F E C \triangle FEC is r = 2 A F E C P F E C = 2 1 2 E C k E C + F E + F C = ( 1 k 1 k ) k ( 1 k 1 k ) + k 2 + ( k k 1 k ) 2 + k 2 + ( k 1 ) 2 r = \cfrac{2A_{\triangle FEC}}{P_{\triangle FEC}} = \cfrac{2 \cdot \frac{1}{2} \cdot EC \cdot k}{EC + FE + FC} = \cfrac{(1 - \frac{k}{1 - k}) \cdot k}{(1 - \frac{k}{1 - k}) + \sqrt{k^2 + (k - \frac{k}{1 - k})^2} + \sqrt{k^2 + (k - 1)^2}} , which after substituting k = 1 4 ( 2 2 ( 2 1 ) ) k = \frac{1}{4}(2 - \sqrt{2(\sqrt{2} - 1)}) solves to r 0.100644 r \approx 0.100644 , so 1 0 6 r = 100644 \lfloor 10^6r \rfloor = \boxed{100644} .

Let the radius of the orange circle be R R and D C B = θ \angle DCB = \theta . From the lower orange circle, we have:

R + R cot θ 2 = B E = 1 Let t = tan θ 2 R + R t = 1 R = t 1 + t \begin{aligned} R+R \cot \frac \theta 2 & = BE = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ R + \frac Rt & = 1 \\ \implies R & = \frac t{1+t} \end{aligned}

From the upper orange circle,

R 1 2 A C = tan ( 4 5 θ 2 ) Note that tan 22. 5 = 2 1 2 R = 2 1 t 1 + ( 2 1 ) t \begin{aligned} \frac R{\frac 12 AC} & = \tan \left(\frac {45^\circ - \theta}2 \right) & \small \blue{\text{Note that }\tan 22.5^\circ = \sqrt 2 -1} \\ \implies \sqrt 2 R & = \frac {\sqrt 2-1-t}{1+(\sqrt 2-1)t} \end{aligned}

Therefore we have:

2 t 1 + t = 2 1 t 1 + ( 2 1 ) t t = 2 2 1 1 3 2 \begin{aligned} \frac {\sqrt 2t}{1+t} & = \frac {\sqrt 2-1-t}{1+(\sqrt 2-1)t} \\ \implies t & = \frac {2\sqrt{\sqrt 2 -1}-1}{3-\sqrt 2} \end{aligned}

Now consider the lower blue circle,

r cot A E C 2 + r cot D C B 2 = C E r cot ( 9 0 + θ 2 ) + r cot θ 2 = 1 tan θ r ( 1 t 1 + t + 1 t ) = 1 2 t 1 t 2 1 + 2 t t 2 t ( 1 + t ) r = 1 2 t t 2 1 t 2 r = t ( 1 2 t t 2 ) ( 1 t ) ( 1 + 2 t t 2 ) = 1371 975 2 + 4164 2 1 2935 2 ( 2 1 ) 9912 7028 2 + 3758 2 1 2620 2 ( 2 1 ) 0.100644375 1 0 6 r = 100644 \begin{aligned} r \cot \frac {\angle AEC}2 + r \cot \frac {\angle DCB}2 & = CE \\ r \cot \left(\frac {90^\circ + \theta}2 \right) + r \cot \frac \theta 2 & = 1 - \tan \theta \\ r \left(\frac {1-t}{1+t} + \frac 1t \right) & = 1 - \frac {2t}{1-t^2} \\ \frac {1+2t-t^2}{t(1+t)} \cdot r & = \frac {1-2t-t^2}{1-t^2} \\ \implies r & = \frac {t(1-2t-t^2)}{(1-t)(1+2t-t^2)} \\ & = \frac {1371-975\sqrt 2+4164\sqrt{\sqrt 2 -1}-2935\sqrt{2(\sqrt 2-1)}}{9912-7028\sqrt 2+3758\sqrt{\sqrt 2 -1}-2620\sqrt{2(\sqrt 2-1)}} \\ & \approx 0.100644375 \\ \implies \lfloor 10^6 r \rfloor & = \boxed{100644} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...