Tri-Angle

Geometry Level pending

In triangle A B C ABC , C \angle C is a right angle and B C > A C BC>AC . Point D D is located on B C BC so that C A D \angle CAD is twice B A D \angle BAD .

If A C A D = 2 3 \dfrac{AC}{AD}=\dfrac 23 , then C D B D = m n \dfrac{CD}{BD}=\dfrac mn , where m m and n n are relatively prime positive integers. Find m + n m+n .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let A C = 2 AC=2 , A D = 3 AD=3 , C D = a CD=a , B D = b BD=b , B A D = θ \angle BAD = \theta and C A D = 2 θ \angle CAD = 2 \theta .

By Pythagorean theorem: C D = A D 2 A C 2 a = 3 2 2 2 = 5 CD = \sqrt{AD^2-AC^2} \implies a = \sqrt{3^2-2^2} = \sqrt 5

From cos 2 θ = A C A D = 2 3 tan 2 θ = 5 2 \cos 2 \theta = \dfrac {AC}{AD} = \dfrac 23 \implies \tan 2 \theta = \dfrac {\sqrt 5}2

Using the identity cos 2 θ = 1 tan 2 θ 1 + tan 2 θ \cos 2 \theta = \dfrac {1-\tan^2 \theta}{1+\tan^2 \theta} :

cos 2 θ = 2 3 1 tan 2 θ 1 + tan 2 θ = 2 3 3 3 tan 2 θ = 2 + 2 tan 2 θ 5 tan 2 θ = 1 tan θ = 1 5 \begin{aligned} \cos 2 \theta & = \frac 23 \\ \frac {1-\tan^2 \theta}{1+\tan^2 \theta} & = \frac 23 \\ 3 - 3 \tan^2 \theta & = 2 + 2 \tan^2 \theta \\ 5 \tan^2 \theta & = 1 \\ \implies \tan \theta & = \frac 1{\sqrt 5} \end{aligned}

We note that:

B C = A C tan 3 θ a + b = 2 tan 3 θ = 2 ( tan θ + tan 2 θ ) 1 tan θ tan 2 θ = 2 ( 1 5 + 5 2 ) 1 1 5 5 2 = 14 5 b = 14 5 a = 14 5 5 = 9 5 5 \begin{aligned} BC & = AC \tan 3 \theta \\ a + b & = 2 \tan 3 \theta = \frac {2 (\tan \theta + \tan 2 \theta)}{1 - \tan \theta \tan 2 \theta} = \frac {2\left(\frac 1{\sqrt 5} + \frac {\sqrt 5}2\right)}{1 - \frac 1{\sqrt 5} \cdot \frac {\sqrt 5}2} = \frac {14}{\sqrt 5} \\ \implies b & = \frac {14}{\sqrt 5} - a = \frac {14}{\sqrt 5} - \sqrt 5 = \frac {9\sqrt 5}5 \end{aligned}

C D B D = a b = 5 9 5 5 = 5 9 \implies \dfrac {CD}{BD} = \dfrac ab = \dfrac {\sqrt 5}{\frac {9\sqrt 5}5} = \dfrac 59

m + n = 5 + 9 = 14 \implies m + n = 5+9 = \boxed{14}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...