Tri-gono-metry

Geometry Level 3

Let f ( x ) = sin x 45 ° + cos x 45 ° f(x) = {\sin}^x {45}^° + {\cos}^x {45}^° .

Then find the value of f ( 2016 ) f ( 2018 ) f ( 2014 ) \dfrac{f(2016) - f(2018)}{f(2014)} .

Give your answer up to two decimal places.


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Menon
Jun 22, 2016

Let f ( n ) = sin n θ + cos n θ f(n) = {\sin}^n \theta + {\cos}^n \theta .
So, lets derive a general formula for f ( n ) f ( n + 2 ) f ( n 2 ) \dfrac{f(n) - f(n + 2)}{f(n - 2)} which is what the answer we want is like.
f ( n ) f ( n + 2 ) f ( n 2 ) = sin n θ + cos n θ sin n + 2 θ cos n + 2 θ sin n 2 θ + cos n 2 θ = sin n θ ( 1 sin 2 θ ) + cos n θ ( 1 cos 2 θ ) sin n 2 θ + cos n 2 θ = sin n θ cos 2 θ + cos n θ sin 2 θ sin n 2 θ + cos n 2 θ = sin 2 θ cos 2 θ ( sin n 2 θ + cos n 2 θ ) sin n 2 θ + cos n 2 θ = sin 2 θ cos 2 θ \begin{aligned} \dfrac{f(n) - f(n + 2)}{f(n - 2)} & = \dfrac{{\sin}^n \theta + {\cos}^n \theta - {\sin}^{n+2} \theta - {\cos}^{n+2} \theta}{{\sin}^{n-2} \theta + {\cos}^{n-2} \theta}\\ \\ & = \dfrac{{\sin}^n \theta\left(1 - {\sin}^2 \theta\right) + {\cos}^n \theta\left(1 - {\cos}^2 \theta\right)}{{\sin}^{n-2} \theta + {\cos}^{n-2} \theta}\\ \\ & = \dfrac{{\sin}^n \theta {\cos}^2 \theta + {\cos}^n \theta {\sin}^2 \theta}{{\sin}^{n-2} \theta + {\cos}^{n-2} \theta}\\ \\ & = \dfrac{{\sin}^2 \theta {\cos}^2 \theta\left({\sin}^{n-2} \theta + {\cos}^{n-2} \theta\right)}{{\sin}^{n-2} \theta + {\cos}^{n-2} \theta}\\ \\ & = \color{#20A900}{\boxed{{\sin}^2 \theta {\cos}^2 \theta}} \end{aligned}

So, putting the value of the angle (i.e. 45 ° {45}^° ) we get:-
f ( 2016 ) f ( 2018 ) f ( 2014 ) = sin 2 45 ° cos 2 45 ° = 1 4 = 0.25 \begin{aligned} \dfrac{f(2016) - f(2018)}{f(2014)} & = {\sin}^2 {45}^° {\cos}^2 {45}^°\\ \\ & = \dfrac{1}{4}\\ \\ & = \color{#3D99F6}{\boxed{0.25}} \end{aligned}

+1 for Finding the general solution :P

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Thanks! :)

Ashish Menon - 4 years, 11 months ago

Great solution amd very well generalised ! (+1) !

Rishabh Tiwari - 4 years, 11 months ago
Sabhrant Sachan
Jun 22, 2016

f ( x ) = ( 1 2 ) x + ( 1 2 ) x 2 1 x 2 f ( 2016 ) f ( 2018 ) f ( 2014 ) = 2 1 1008 2 1 1009 2 1 1007 = 2 1 2 2 Our answer : 1 4 = 0.25 \quad f(x) = \left(\dfrac{1}{\sqrt2}\right)^{x}+\left(\dfrac{1}{\sqrt2}\right)^{x} \implies 2^{1-\frac{x}{2}} \\ \quad \dfrac{f(2016)-f(2018)}{f(2014)} = \dfrac{2^{1-1008} - 2^{1-1009}}{2^{1-1007}} = 2^{-1}-2^{-2} \\ \quad \text{Our answer : } \dfrac{1}{4} = \boxed{0.25}

Perfect one (+1)

Ashish Menon - 4 years, 11 months ago

Nicely done , I did the same (+1)!

Rishabh Tiwari - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...