Let f ( x ) = sin x 4 5 ° + cos x 4 5 ° .
Then find the value of f ( 2 0 1 4 ) f ( 2 0 1 6 ) − f ( 2 0 1 8 ) .
Give your answer up to two decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
+1 for Finding the general solution :P
Great solution amd very well generalised ! (+1) !
f ( x ) = ( 2 1 ) x + ( 2 1 ) x ⟹ 2 1 − 2 x f ( 2 0 1 4 ) f ( 2 0 1 6 ) − f ( 2 0 1 8 ) = 2 1 − 1 0 0 7 2 1 − 1 0 0 8 − 2 1 − 1 0 0 9 = 2 − 1 − 2 − 2 Our answer : 4 1 = 0 . 2 5
Perfect one (+1)
Nicely done , I did the same (+1)!
Problem Loading...
Note Loading...
Set Loading...
Let f ( n ) = sin n θ + cos n θ .
So, lets derive a general formula for f ( n − 2 ) f ( n ) − f ( n + 2 ) which is what the answer we want is like.
f ( n − 2 ) f ( n ) − f ( n + 2 ) = sin n − 2 θ + cos n − 2 θ sin n θ + cos n θ − sin n + 2 θ − cos n + 2 θ = sin n − 2 θ + cos n − 2 θ sin n θ ( 1 − sin 2 θ ) + cos n θ ( 1 − cos 2 θ ) = sin n − 2 θ + cos n − 2 θ sin n θ cos 2 θ + cos n θ sin 2 θ = sin n − 2 θ + cos n − 2 θ sin 2 θ cos 2 θ ( sin n − 2 θ + cos n − 2 θ ) = sin 2 θ cos 2 θ
So, putting the value of the angle (i.e. 4 5 ° ) we get:-
f ( 2 0 1 4 ) f ( 2 0 1 6 ) − f ( 2 0 1 8 ) = sin 2 4 5 ° cos 2 4 5 ° = 4 1 = 0 . 2 5