Triangle and a semicircle

Geometry Level 4

In the triangle shown above, A B = 12 AB=12 , B C = 18 BC=18 and A C = 25 AC=25 . A semicircle is drawn so that its center lies on A C AC and so that it is tangent to A B AB and B C BC . If O O is the center of the semicircle, find the area of the region inside the triangle but outside the semicircle. If your answer is of the form a 6479 6479 π b \dfrac{a\sqrt{6479}-6479\pi}{b} , where a a and b b are positive integers, give your answer as a + b a+b .


The answer is 648.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Marta Reece
May 4, 2017

The area of triangle ABC can be obtained from the sides and the semi-perimeter s s using Heron's formula:

A = s ( s 12 ) ( s 18 ) ( s 25 ) = 5 6479 4 A=\sqrt{s(s-12)(s-18)(s-25)}=\frac{5\sqrt{6479}}{4}

This is equal to the sum of the areas of A O B \triangle AOB and B O C \triangle BOC which are:

A A O B = 12 R 2 = 6 R A_{AOB}=\frac{12R}{2}=6R ... This comes from the base 12 and the height perpendicular to it,which is the radius R R of the half circle.

A B O C = 18 R 2 = 9 R A_{BOC}=\frac{18R}{2}=9R ... Calculated from the base 18 and the height, which is again the radius R R .

Equation 6 R + 9 R = 5 6479 4 6R+9R=\frac{5\sqrt{6479}}{4} has a solution R = 6479 12 R=\frac{\sqrt{6479}}{12}

Area of the half circle is A h c = π 2 × 6479 1 2 2 A_{hc}=\frac{\pi}{2}\times\frac{6479}{12^2}

So the area inside the triangle but outside the half circle is A = A A B C A h c = 5 6479 4 6479 π 288 = 360 6479 6479 π 288 A=A_{ABC}-A_{hc}=\frac{5\sqrt{6479}}{4}-\frac{6479\pi}{288}=\frac{360\sqrt{6479}-6479\pi}{288}

a + b = 360 + 288 = 648 a+b=360+288=\boxed{648}

Best solution by far!

Wei Chen - 4 years, 1 month ago

Very simple and elegant solution

Valentin Duringer - 1 year, 3 months ago

Using @Marvin Kalngan's figure above, where O D OD and O E OE are radius r r from the centre O O to the points of contact of A B AB and B C BC respectively. We note that:

{ sin A = r A O A O = r sin A sin C = r C O C O = r sin C \begin{cases} \sin A = \dfrac r{AO} & \implies AO = \dfrac r{\sin A} \\ \sin C = \dfrac r{CO} & \implies CO = \dfrac r{\sin C} \end{cases} .

From cosine rule , we have:

1 8 2 = 1 2 2 + 2 5 2 2 ( 12 ) ( 25 ) cos A cos A = 1 2 2 + 2 5 2 1 8 2 2 ( 12 ) ( 25 ) = 89 120 sin A = 6479 120 \begin{aligned} 18^2 & = 12^2+25^2 - 2(12)(25)\cos A \\ \cos A & = \frac {12^2+25^2 - 18^2}{2(12)(25)} = \frac {89}{120} \\ \implies \sin A & = \frac {\sqrt{6479}}{120} \end{aligned}

From sine rule , we have:

sin C A B = sin A B C sin C = A B sin A B C = 12 18 6479 120 = 6479 180 \begin{aligned} \frac {\sin C}{AB} & = \frac {\sin A}{BC} \\ \implies \sin C & = \frac {AB \cdot \sin A}{BC} = \frac {12}{18}\cdot \frac {\sqrt{6479}}{120} = \frac {\sqrt{6479}}{180} \end{aligned}

Now we have:

A O + C O = A C = 25 r sin A + r sin C = 25 r ( 120 6479 + 180 6479 ) = 25 r = 6479 12 \begin{aligned} AO + CO = AC & = 25 \\ \implies \frac r{\sin A} + \frac r{\sin C} & = 25 \\ r\left(\frac {120}{\sqrt{6479}} + \frac {180}{\sqrt{6479}} \right) & = 25 \\ \implies r & = \frac {\sqrt{6479}}{12} \end{aligned}

The area of shaded region is equal to the area of A B C \triangle ABC less that of the semicircle:

A = 1 2 A B A C sin A π r 2 2 = 12 25 2 6479 120 π 2 6479 144 = 360 6479 6479 π 288 \begin{aligned} A & = \frac 12 AB\cdot AC \cdot \sin A - \frac {\pi r^2}2 \\ & = \frac {12\cdot 25}2 \cdot \frac {\sqrt{6479}}{120} - \frac \pi 2 \cdot \frac {6479}{144} \\ & = \frac {360\sqrt{6479} - 6479 \pi}{288} \end{aligned}

a + b = 360 + 288 = 648 \implies a+b = 360+288 = \boxed{648} .

Can you please tell how you could use Mr. Marvin Kalngan's figure? Often when I wanted I am not able to.

Niranjan Khanderia - 4 years, 1 month ago

Log in to reply

At the image, just right-click to copy the image and then paste it at Paint. Save it and then use the picture button to paste it at solution box.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

Thank you.

Niranjan Khanderia - 4 years, 1 month ago

Draw O D OD and O E OE to the points of contact of tangents A B AB and B C BC , respectively. Let D B = B E = y DB=BE=y , r r = radius of the semicircle, A A = area of the region inside the triangle but outside the semicircle, A T A_T = area of the triangle and A C A_C = area of the semicircle

In A B C \triangle ABC , B O BO bisects B \angle B so that A B A O = C B C O \dfrac{AB}{AO}=\dfrac{CB}{CO} ,

then,

12 A O = 18 25 A O \dfrac{12}{AO}=\dfrac{18}{25-AO}

12 ( 25 A O ) = 18 ( A O ) 12(25-AO)=18(AO)

300 12 ( A O ) = 18 ( A O ) 300-12(AO)=18(AO)

300 = 30 ( A O ) 300=30(AO)

10 = A O 10=AO

It follows that,

O C = 25 A O = 25 10 = 15 OC=25-AO=25-10=15

consider A D O \triangle ADO , by Pythagorean Theorem , we have

1 0 2 = r 2 + ( 12 y ) 2 10^2=r^2+(12-y)^2

44 + 24 y y 2 = r 2 -44+24y-y^2=r^2 ( 1 ) \color{#D61F06}(1)

consider C E O \triangle CEO , by Pythagorean Theorem , we have

1 5 2 = r 2 + ( 18 y ) 2 15^2=r^2+(18-y)^2

99 + 36 y y 2 = r 2 -99+36y-y^2=r^2 ( 2 ) \color{#D61F06}(2)

equate ( 1 ) \color{#D61F06}(1) and ( 2 ) \color{#D61F06}(2)

44 + 24 y y 2 = 99 + 36 y y 2 -44+24y-y^2=-99+36y-y^2

55 = 12 y 55=12y

55 12 = y \dfrac{55}{12}=y

Substitute the above in ( 1 ) \color{#D61F06}(1) or ( 2 ) \color{#D61F06}(2)

r 2 ( 55 12 ) 2 + 24 ( 55 12 ) 44 r^2-(\dfrac{55}{12})^2+24(\dfrac{55}{12})-44

r 2 = 6479 144 r^2=\dfrac{6479}{144}

r = 6479 144 r=\sqrt{\dfrac{6479}{144}}

solving for the area of the semicircle

A c = π 2 r 2 = 6479 π 288 A_c=\dfrac{\pi}{2}r^2=\dfrac{6479\pi}{288}

solving for the area of the triangle by Heron's Formula

s = 12 + 18 + 25 2 = 55 2 s=\dfrac{12+18+25}{2}=\dfrac{55}{2}

s 12 = 31 2 s-12=\dfrac{31}{2}

s 18 = 19 2 s-18=\dfrac{19}{2}

s 25 = 5 2 s-25=\dfrac{5}{2}

Substituting, we obtain

A T = ( 55 2 ) ( 31 2 ) ( 19 2 ) ( 5 2 ) = 161975 16 A_T=\sqrt{(\dfrac{55}{2})(\dfrac{31}{2})(\dfrac{19}{2})(\dfrac{5}{2})}=\sqrt{\dfrac{161975}{16}}

A T = 5 4 6479 A_T=\dfrac{5}{4}\sqrt{6479}

Finally,

A = A T A C = 5 4 6479 6479 π 288 = 360 6479 6479 π 288 A=A_T-A_C=\dfrac{5}{4}\sqrt{6479}-\dfrac{6479\pi}{288}=\dfrac{360\sqrt{6479}-6479\pi}{288}

It follows that,

a = 360 a=360 and b = 288 b=288

so

a + b = 360 + 288 = 648 a+b=360+288=648


Sorry. I did not see Mr. Marta Reece's solution. I saw it now. It is almost the same.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...