Triangle Cascade

Geometry Level 4

As shown above, A F G \triangle AFG is partitioned into smaller ones with B C D E F G BC || DE || FG , and the number in each colored region indicates the area of that triangle.

What is the total area of the yellow region?

Note : Figure not drawn to scale.


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

With B C D E F G BC || DE || FG , we can conclude that A B C A D E A F G \triangle ABC \sim \triangle ADE \sim \triangle AFG .

Suppose the ratio of D E B C = x \dfrac{DE}{BC} = x and that of F G B C = y \dfrac{FG}{BC} = y for some positive numbers x , y x,y .

We can then set up equations of the known area ratios:

x ( x 1 ) ( 9 ) = 10 x(x-1)(9) = 10

y ( y x ) ( 9 ) = 24 y(y-x)(9) = 24

Solving for x x , we will obtain:

9 x 2 9 x 10 = 0 9x^2 -9x -10 = 0

( 3 x 5 ) ( 3 x + 2 ) = 0 (3x-5)(3x+2) = 0

Thus, x = 5 3 x = \dfrac{5}{3} . Substituting this into the second equation, we will obtain:

y ( 3 y 5 ) = 8 y(3y - 5) = 8

3 y 2 5 y 8 = 0 3y^2 - 5y - 8 = 0

( 3 y 8 ) ( y + 1 ) = 0 (3y-8)(y+1) = 0

Thus, y = 8 3 y = \dfrac{8}{3} .

Now we can calculate the area of B C D \triangle BCD = 9 x 2 10 9 = 25 19 = 6 9x^2 - 10 - 9 = 25-19 = 6 .

Then the area of D E F \triangle DEF = 9 y 2 9 x 2 24 = 64 25 24 = 15 9y^2 - 9x^2 - 24 = 64-25-24 = 15 .

Finally, the total yellow area = 15 + 6 = 21 15+6 = \boxed{21} .

very nice problem.

Hana Wehbi - 2 years, 4 months ago

Log in to reply

Thank you. :)

Worranat Pakornrat - 2 years, 4 months ago

Did the same way! Great problem and solution

Mr. India - 2 years, 3 months ago

Chew-Seong Cheong
Jan 30, 2019

We note that A B C \triangle ABC , A D E \triangle ADE , and A F G \triangle AFG are similar. Let B C = x BC = x , D E = y DE=y , and F G = z FG = z . Then the ratio of the three similar triangles is A A B C : A A D E : A A F G = x 2 : y 2 : z 2 A_{\color{#D61F06}ABC} : A_{ADE} : A_{AFG} = x^2 : y^2:z^2 . We can also consider the ratios of areas of the red, green, and blue triangles as follows:

y ( y x ) x 2 = A C D E A A B C = 10 9 ( y x ) 2 y x 10 9 = 0 ( y x 5 3 ) ( y x + 2 3 ) = 0 y x = 5 3 Since y x > 0 \begin{aligned} \frac {y(y-x)}{x^2} & = \frac {A_{\color{#20A900}CDE}}{A_{\color{#D61F06}ABC}} = \frac {10}9 \\ \left(\frac yx \right)^2 - \frac yx - \frac {10}9 & = 0 \\ \left(\frac yx - \frac 53\right)\left(\frac yx + \frac 23\right) & = 0 \\ \implies \frac yx & = \frac 53 & \small \color{#3D99F6} \text{Since }\frac yx > 0 \end{aligned}

Similarly,

z ( z y ) x 2 = A E F G A A B C = 24 9 ( z x ) 2 y z x 2 = 8 3 ( z x ) 2 5 3 z x 8 3 = 0 ( z x 8 3 ) ( y x + 1 ) = 0 z x = 8 3 Since z x > 0 \begin{aligned} \frac {z(z-y)}{x^2} & = \frac {A_{\color{#3D99F6}EFG}}{A_{\color{#D61F06}ABC}} = \frac {24}9 \\ \left(\frac zx \right)^2 - \frac {yz}{x^2} & = \frac 83 \\ \left(\frac zx \right)^2 - \frac 53 \frac zx - \frac 83 & = 0 \\ \left(\frac zx - \frac 83\right)\left(\frac yx + 1\right) & = 0 \\ \implies \frac zx & = \frac 83 & \small \color{#3D99F6} \text{Since }\frac zx > 0 \end{aligned}

Now, we have A A D E A A B C = ( 5 3 ) 2 A B C D + 9 + 10 9 = 25 9 A B C D = 6 \dfrac {A_{ADE}}{A_{\color{#D61F06}ABC}} = \left(\dfrac 53\right)^2 \implies \dfrac {A_{\color{#CEBB00}BCD}+{\color{#D61F06}9}+\color{#20A900}10}{\color{#D61F06}9} = \dfrac {25}9 \implies A_{\color{#CEBB00}BCD} = 6

Similarly, A A F G A A B C = ( 8 3 ) 2 A D E F + A A D E + 24 9 = A D E F + 25 + 24 9 = 64 9 A D E F = 15 \dfrac {A_{AFG}}{A_{\color{#D61F06}ABC}} = \left(\dfrac 83\right)^2 \implies \dfrac {A_{\color{#CEBB00}DEF}+A_{ADE}+\color{#3D99F6}24}{\color{#D61F06}9} = \dfrac {A_{\color{#CEBB00}DEF}+25+\color{#3D99F6}24}{\color{#D61F06}9} = \dfrac {64}9 \implies A_{\color{#CEBB00}DEF} = 15

Therefore A B C D + A D E F = 6 + 15 = 21 A_{\color{#CEBB00}BCD} + A_{\color{#CEBB00}DEF} = 6 + 15 = \boxed{21} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...