Triangle Centers

Geometry Level 5

The sides of the red triangle are integers between 1 1 and 10 10 inclusive. The vertices of the blue triangle are formed by the incenter, circumcenter, and centroid of the red triangle. If the area of the blue triangle is expressed as a a b \frac{a\sqrt{a}}{b} , find its maximum value. Submit a b a - b .

Note: As always, a a and b b are coprime and square-free.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 5, 2020

Using the circumcentre 0 0 as the origin, if A , B , C A,B,C have position vectors a , b , c \mathbf{a},\mathbf{b},\mathbf{c} respectively, then the position vectors of the centroid G G and the incentre I I are O G = 1 3 ( a + b + c ) O I = 1 a + b + c ( a a + b b + c c ) \overrightarrow{OG} = \tfrac13(\mathbf{a}+\mathbf{b}+\mathbf{c}) \hspace{2cm} \overrightarrow{OI} \; = \; \tfrac{1}{a+b+c}(a\mathbf{a} + b\mathbf{b} + c\mathbf{c}) and hence O I × O G = 1 3 ( a + b + c ) [ ( a b ) a × b + ( b c ) b × c + ( c a ) c × a ] \overrightarrow{OI} \times \overrightarrow{OG} \; = \; \frac{1}{3(a+b+c)}\Big[(a-b)\mathbf{a} \times \mathbf{b} + (b-c)\mathbf{b} \times \mathbf{c} + (c-a)\mathbf{c} \times \mathbf{a}\Big] Thus the area of O I G OIG is (here R R is the radius of the circumcircle): O I G = R 2 6 ( a + b + c ) [ ( a b ) sin 2 C + ( b c ) sin 2 A + ( c a ) sin 2 B ] = R 6 ( a + b + c ) ( a b ) c cos C + ( b c ) a cos A + ( c a ) b cos B = a b c 24 ( a + b + c ) Δ ( a b ) c a 2 + b 2 c 2 2 a b + ( b c ) a b 2 + c 2 a 2 2 b c + ( c a ) b a 2 + c 2 b 2 2 a c = 1 48 ( a + b + c ) Δ ( a b ) c 2 ( a 2 + b 2 c 2 ) + ( b c ) a 2 ( b 2 + c 2 a 2 ) + ( c a ) b 2 ( a 2 + c 2 b 2 ) = 1 12 ( b a ) ( c a ) ( c b ) a + b + c ( a + b + c ) ( a b + c ) ( a + b c ) \begin{aligned} |OIG| & = \; \left|\frac{R^2}{6(a+b+c)}\big[(a-b)\sin2C + (b-c)\sin2A + (c-a)\sin2B\big]\right| \\ & = \; \frac{R}{6(a+b+c)}\Big|(a-b)c\cos C + (b-c)a\cos A + (c-a)b \cos B\Big| \\ & = \; \frac{abc}{24(a+b+c)\Delta}\left|(a-b)c\frac{a^2+b^2-c^2}{2ab} + (b-c)a\frac{b^2 + c^2 - a^2}{2bc} + (c-a)b\frac{a^2 + c^2 - b^2}{2ac}\right| \\ & = \; \frac{1}{48(a+b+c)\Delta}\Big| (a-b)c^2(a^2+b^2-c^2) + (b-c)a^2(b^2+c^2-a^2) + (c-a)b^2(a^2+c^2-b^2)\Big| \\ & = \; \tfrac{1}{12}\big|(b-a)(c-a)(c-b)\big| \sqrt{\frac{a+b+c}{(-a+b+c)(a-b+c)(a+b-c)}} \end{aligned} where Δ = 1 4 ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) \Delta = \tfrac14\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)} is the area of the triangle A B C ABC . Thus O I G |OIG| has been expressed in terms of the sides of the triangle A B C ABC . Maximising this expression over the (finite) set of possible edge lengths { ( a , b , c ) N 3 1 a b c 10 , c < a + b } \big\{(a,b,c) \in \mathbb{N}^3 \, \big| \, 1 \le a \le b \le c \le 10\,,\,c < a+b\big\} , we see that the largest area of O I G OIG is 7 7 6 \frac{7\sqrt{7}}{6} , when a = 3 a=3 , b = 8 b=8 , c = 10 c=10 .

This makes the answer 7 6 = 1 7-6 = \boxed{1} .

Thank you!

Fletcher Mattox - 9 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...