Triangle Centroid

Geometry Level 2

Let a , b , c a, b, c be the side lengths of triangle A B C ABC above, and let d , e , f d, e, f be the distances from its centroid O O to the vertices. (The red lines are the medians.)

What is the ratio a 2 + b 2 + c 2 d 2 + e 2 + f 2 ? \dfrac{a^2+b^2+c^2}{d^2+e^2+f^2}?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush G Rai
Nov 12, 2016

Oh yes. Exactly I did. Btw I like your paper's border :p

Rakshit Joshi - 4 years, 7 months ago

Log in to reply

hahaha.thanks.Its a scrap book.

Ayush G Rai - 4 years, 7 months ago

Log in to reply

ok, good:p

Rakshit Joshi - 4 years, 7 months ago

good solution

A Former Brilliant Member - 4 years, 7 months ago

Log in to reply

Thanks a lot. Trying foe more easier solutions.

Ayush G Rai - 4 years, 7 months ago

+1 Nice use of apollonius theorem .

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

thank u sir.

Ayush G Rai - 4 years, 7 months ago
Hosam Hajjir
Nov 14, 2016

Vectors prove to be convenient in this problem.

Let u = A B \vec{u} = \vec{AB} and v = A C \vec{v} = \vec{AC}

and let a = B C , b = A C = v , c = A B = u a = | \vec{BC} |, b = | \vec{AC} |=| \vec{v} | , c = | \vec{AB} | = | \vec{u} |

and let d = O A , e = O B , f = O C d = | \vec{OA} |, e = | \vec{OB} | , f = | \vec{OC} |

Then

A O = 1 3 ( u + v ) ( 1 ) \vec{AO} = \dfrac{1}{3} ( \vec{u}+\vec{v} ) \cdots (1)

O B = u A O = 2 3 u 1 3 v ( 2 ) \vec{OB} = \vec{u} - \vec{AO} = \dfrac{2}{3} \vec{u} - \dfrac{1}{3} \vec{v} \cdots (2)

and

O C = v A O = 2 3 v 1 3 u ( 3 ) \vec{OC} = \vec{v} - \vec{AO} = \dfrac{2}{3} \vec{v} - \dfrac{1}{3} \vec{u} \cdots (3)

In addition,

B C = u v ( 4 ) \vec{BC} = \vec{u} - \vec{v} \cdots (4)

Now using the length formula for a vector, and equation (1), we have

d 2 = 1 9 ( u u + v v + 2 u v ) d^2 = \dfrac{1}{9} ( \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2 \vec{u} \cdot \vec{v} )

but u u = c 2 \vec{u} \cdot \vec{u} = c^2 and v v = b 2 \vec{v} \cdot \vec{v} = b^2

Hence,

d 2 = 1 9 ( c 2 + b 2 + 2 u v ) ( 5 ) d^2 = \dfrac{1}{9} ( c^2 + b^2 + 2 \vec{u} \cdot \vec{v} ) \cdots (5)

similarly, we obtain from equations (2) through (4), the following,

e 2 = 1 9 ( 4 c 2 + b 2 4 u v ) ( 6 ) e^2 = \dfrac{1}{9} ( 4 c^2 + b^2 - 4 \vec{u} \cdot \vec{v} ) \cdots (6)

and

f 2 = 1 9 ( c 2 + 4 b 2 4 u v ) ( 7 ) f^2 = \dfrac{1}{9} ( c^2 + 4 b^2 - 4 \vec{u} \cdot \vec{v} ) \cdots (7)

and finally, from equation (4) , we have

a 2 = b 2 + c 2 2 u v ( 8 ) a^2 = b^2 + c^2 - 2 \vec{u} \cdot \vec{v} \cdots (8)

Adding equations (5) through (7), we get

d 2 + e 2 + f 2 = 1 9 ( 6 b 2 + 6 c 2 6 u v ) ( 9 ) d^2 + e^2 + f^2 = \dfrac{1}{9} ( 6 b^2 + 6 c^2 - 6 \vec{u} \cdot \vec{v}) \cdots (9)

Using equation (8) to replace the last term, we get

d 2 + e 2 + f 2 = 1 9 ( 6 b 2 + 6 c 2 + 3 ( a 2 b 2 c 2 ) ) d^2 + e^2 + f^2 =\dfrac{1}{9}( 6 b^2 + 6 c^2 + 3 (a^2 - b^2 - c^2 ) )

which becomes,

d 2 + e 2 + f 2 = 1 3 ( a 2 + b 2 + c 2 ) ( 10 ) d^2 + e^2 + f^2 = \dfrac{1}{3} (a^2 + b^2 + c^2) \cdots (10)

So that finally, we have

a 2 + b 2 + c 2 d 2 + e 2 + f 2 = 3 \dfrac{a^2 + b^2 + c^2}{d^2 + e^2 + f^2} = 3

+1 Vectors can be a very efficient way to store information about length and area. It makes calculations like this easier to "decompose" into the various parts.

Calvin Lin Staff - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...