Triangle Craze

Geometry Level 3

The problem below is a brilliant problem of the week that I altered.

Let p p be a prime number and p > 2 p > 2 .

A B C \triangle{ABC} has side lengths and height as shown above and A B C \triangle{A^{*}B^{*}C^{*}} has side lengths sin ( A ) , sin ( B ) , \sin(A), \sin(B), and sin ( C ) . \sin(C).

If the area A A B C = m n A_{\triangle{A^{*}B^{*}C^{*}}} = \dfrac{m}{n} , where m m and n n are coprime positive integers, find m + n m + n .


The answer is 265921.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 12, 2018

Finding the general area for this particular problem simplifies the work.

Using the law of sines on A B C \triangle{ABC} we obtain:

sin ( A ) = a b sin ( B ) \sin(A) = \dfrac{a}{b}\sin(B)

sin ( C ) = c b sin ( B ) \sin(C) = \dfrac{c}{b}\sin(B)

Using the law of cosines on A B C \triangle{A^{*}B^{*}C^{*}} we obtain:

sin 2 ( B ) = a 2 b 2 sin 2 ( B ) + c 2 b 2 sin 2 ( B ) 2 a c b 2 sin 2 ( B ) cos ( A ) \sin^2(B) = \dfrac{a^2}{b^2}\sin^2(B) + \dfrac{c^2}{b^2}\sin^2(B) - \dfrac{2ac}{b^2}\sin^2(B)\cos(A^{*})

cos ( A ) = a 2 + c 2 b 2 2 a c = cos ( B ) sin ( A ) = 1 cos 2 ( B ) ) = sin ( B ) h = sin ( A ) sin ( B ) \implies \cos(A^{*}) = \dfrac{a^2 + c^2 - b^2}{2ac} = \cos(B) \implies \sin(A^{*}) = \sqrt{1 - \cos^2(B))} = \sin(B) \implies h^{*} = \sin(A)\sin(B) \implies

A A B C = 1 2 sin ( A ) sin ( B ) sin ( C ) = 1 2 ( a c b 2 ) sin 3 ( B ) A_{\triangle{A^{*}B^{*}C^{*}}} = \dfrac{1}{2}\sin(A)\sin(B)\sin(C) = \boxed{\dfrac{1}{2}(\dfrac{ac}{b^2})\sin^3(B)} .

Let prime p > 2 p > 2 .

( p 2 4 , 4 p , p 2 + 4 ) (p^2 - 4, 4p, p^2 + 4) is a primitive pythagorean triple with D B = p 2 4 A D = p 2 + 6 p + 8 DB = p^2 - 4 \implies AD = p^2 + 6p + 8 .

For right A C D \triangle{ACD} : ( A C ) 2 = ( 12 p + 1 ) 2 = ( p 2 + 6 p + 8 ) 2 + ( 4 p ) 2 p 4 + 12 p 3 76 p 2 + 72 p + 63 = 0 (AC)^2 = (12p + 1)^2 = (p^2 + 6p + 8)^2 + (4p)^2 \implies p^4 + 12p^3 - 76p^2 + 72p + 63 = 0 .

By inspection p = 3 p = 3 is a root of p 4 + 12 p 3 76 p 2 + 72 p + 63 = 0 p^4 + 12p^3 - 76p^2 + 72p + 63 = 0 .

Performing long division we obtain: ( p 3 ) ( p 3 + 15 p 2 31 p 21 ) = 0 p = 3 (p - 3) * (p^3 + 15p^2 - 31p - 21) = 0 \implies p = 3 and prime p 3 f ( p ) = p 3 + 15 p 2 31 p 2 p \geq 3 \implies f(p) = p^3 + 15p^2 - 31p - 2 1 is monotonic increasing f ( p ) f ( 3 ) = 48 p = 3 \implies f(p) \geq f(3) = 48 \implies p = 3 is the only prime root satisfying p 4 + 12 p 3 76 p 2 + 72 p + 63 = 0. p^4 + 12p^3 - 76p^2 + 72p + 63 = 0.

Using the general area derived above we obtain:

sin ( B ) = 12 13 A A B C = 1 2 ( 13 ) ( 40 ) 3 7 2 ( 12 13 ) 3 = ( 20 ) ( 1 2 3 ) 48 1 2 = 34560 231361 = m n m + n = 265921 \sin(B) = \dfrac{12}{13} \implies A_{\triangle{A^{*}B^{*}C^{*}}} = \dfrac{1}{2}\dfrac{(13)(40)}{37^2} (\dfrac{12}{13})^3 = \dfrac{(20)(12^3)}{481^2} = \dfrac{34560}{231361} = \dfrac{m}{n} \implies m + n = \boxed{265921} .

Note: ( p 2 4 , 4 p , p 2 + 4 ) (p^2 - 4, 4p, p^2 + 4) is a primitive pythagorean triple for any prime p > 2 p > 2 and ( 12 , 35 , 37 ) (12,35,37) is also a primitive pythagorean triple.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...