Triangle espacate

Geometry Level 4

Look at the transformation the isosceles triangle A B C ABC undergoes above. A , B A, B and D D are collinear, and so are A , C A, C and E E . M M is the midpoint of B C BC and B A C = 20 º \angle BAC = 20º . Suppose we do the same thing with triangle D E M DEM and so on, repeating the process indefinitely. How many times do we need to do this - including the first transformation - for the greater angle of the resulting triangle to be 17 5 175^\circ ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dudu Bello
Jul 4, 2015

DBM is isosceles and the external angle A B M \angle ABM is divided equally between B D M \angle BDM and B M D \angle BMD . Also, A, B and D are collinear, so are A, C and E, and B D = B M = C M = C E BD=BM=CM=CE , so DE is parallel to BC. Hence, B M D = M D E = A B M 2 \angle BMD = \angle MDE = \frac { \angle ABM }{ 2 } . The same goes for D E M \angle DEM . As a result, the congruent angles ( α n { \alpha }_{ n } )of the resulting isosceles triangle is always half of those of the former ones ( α n 1 { \alpha }_{ n-1 } ). Let A B M \angle ABM be α 0 { \alpha }_{ 0 } . We know that B A C = 20 º \angle BAC = 20º . Thus:

α n = α n 1 2 { \alpha }_{ n } = \frac { { \alpha }_{ n-1 } }{ 2 }

α 0 = 80 º { \alpha }_{ 0 } = 80º

α n = α 0 ( 1 2 ) n { \alpha }_{ n } = { \alpha }_{ 0 }\cdot{ \left( \frac { 1 }{ 2 } \right) }^{ n }

α n = 80 º 2 n { \alpha }_{ n }=80º\cdot { 2 }^{ -n }

Let B A C \angle BAC be θ 0 { \theta }_{ 0 } , D M E \angle DME be θ 1 { \theta }_{ 1 } and so on. Therefore, we have that:

θ n = 180 º 2 α n { \theta }_{ n } = 180º - 2\cdot { \alpha }_{ n }

θ n = 180 º 2 80 º 2 n { \theta }_{ n } = 180º - 2\cdot80º\cdot { 2 }^{ -n }

For θ n = 175 º { \theta }_{ n } = 175º , it goes like this:

175 º = 180 º 2 80 º 2 n 175º = 180º - 2\cdot80º\cdot { 2 }^{ -n }

160 º 2 n = 5 º 160º\cdot { 2 }^{ -n } = 5º

2 n = 1 32 = 2 5 { 2 }^{ -n } = \frac { 1 }{ 32 } = { 2 }^{ -5 }

n = 5 n=5

Hence, we need to form 5 triangles in order to get to the angle of 175º.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...