Triangle in circle

Geometry Level 4

In the diagram above, AC represents the diameter, B lies on the circumference of the circle, and you are given that (Area of Circle) / (Area of Triangle) = 2π. What is the difference, in degrees, of the two smaller angles of the triangle?


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Sean Ty
Jul 22, 2014

Let A B = b AB=b and B C = a BC=a .

Since AC is the diameter, then A B C \triangle ABC is right-angled at B B .

By the Pythagorean Theorem, A C = a 2 + b 2 AC=\sqrt{a^{2}+b^{2}}

Area of the circle = π ( a 2 + b 2 ) 2 4 =\dfrac{\pi (\sqrt{a^{2}+b^{2}})^{2}}{4}

Area of A B C = a b 2 \triangle ABC=\dfrac{ab}{2}

And π ( a 2 + b 2 ) 2 2 a b = 2 π \dfrac{\pi (\sqrt{a^{2}+b^{2}})^{2}}{2ab}=2\pi

Giving us a 2 + b 2 2 a b = 2 \dfrac{a^{2}+b^{2}}{2ab}=2

By Sine Law,

a sin A = b sin C = a 2 + b 2 \dfrac{a}{\sin A}=\dfrac{b}{\sin C}=\sqrt{a^{2}+b^{2}}

Substituting to the above equation yields

a 2 2 ( sin 2 A ) ( a ) ( sin C sin A ) ( a ) = 2 \dfrac{a^{2}}{2(\sin^{2} A)(a)(\dfrac{\sin C}{\sin A})(a)}=2

1 2 sin A sin C = 2 \dfrac{1}{2\sin A \sin C}=2

1 cos ( A C ) = 2 \dfrac{1}{\cos (A-C)}=2

cos ( A C ) = 1 2 \cos (A-C)=\dfrac{1}{2}

And finally,

A C = 6 0 A-C=\boxed{60^\circ}

No need to use the Sine Law.

a 2 + b 2 2 a b = 2 1 2 c 2 a b = 2 \displaystyle \frac{a^2+b^2}{2ab}=2\implies \frac{1}{2}\cdot\frac{c^2}{ab}=2 1 2 c a c b = 2 1 2 sin A sin C = 2 \displaystyle \implies \frac{1}{2}\cdot\frac{c}{a}\cdot\frac{c}{b}=2\implies \frac{1}{2\sin A\sin C}=2

mathh mathh - 6 years, 10 months ago

Log in to reply

Cool! Sorry for not realizing that!

Sean Ty - 6 years, 10 months ago

...or once you have a 2 + b 2 2 a b = 2 \frac{a^{2} + b^{2}} {2ab} = 2 solve that a 2 + b 2 = 4 a b a^{2} + b^{2} = 4ab a 2 4 a b + b 2 = 0 a^{2} -4ab + b^{2} = 0 Thus using the quadratic formula: a = ( 2 ± 3 ) b a = (2 \pm \sqrt{3})b tan ( A C B ) = a b \tan(ACB) = \frac {a} {b} so using the inverse of tan the two angles are 7 5 a n d 1 5 75 ^ \circ and 15 ^ \circ

Graeme Foster - 6 years, 10 months ago

Log in to reply

I'm attempting not to use a calculator :)

Sean Ty - 6 years, 10 months ago

mind blowing

VAIBHAV borale - 6 years, 10 months ago

but by using pythagores theorem in ABC and given condition we r getting ab =bc then the angles must be equal and the diifference will be zero

Upmanyu Sharma - 6 years, 10 months ago

find the relation b/w radius and b,h. where b is the base and h, the height . substituting in Pythagoras theorem you will get a homogeneous eqn in b and h. transform it into quadratic in X where X is b/h or tangent of the angle C. solving TAN C is obtained which is 15 degrees

huge wolverine - 6 years, 10 months ago
Satyen Nabar
Jul 24, 2014

As triangle ABC is a right triangle, angle ABC is a right angle.

Let angle ACB be theta.

AC = 2r.

AB = 2r sin theta

BC = 2r cos theta

Area of triangle = 4r^2( sin theta) ( cos theta) /2 = 2r^2 (sin theta) (cos theta)

Using double identity, sin (2 theta)= 2 (sin theta)( cos theta)

Area of triangle = r^2 (sin 2 theta)

Area of circle / area of triangle = pi r^2 / r^2 sin (2 theta)= pi/sin (2 theta) = 2pi

sin (2 theta) = 1/2

2 theta = 30 degrees.

theta = 15 degrees

The complementary angle BAC = 75 degrees

Difference in angles = 60 degrees

good, this is a right way to find the ans

Ravikumar Singh - 6 years, 10 months ago

I too used the same approach.

Girish Girish - 6 years, 10 months ago

i really dont get this how the difference between them is 60

Mayur Gohil - 6 years, 10 months ago

thanku buddy

pradeep sharma - 6 years, 10 months ago
Jubayer Nirjhor
Jul 28, 2014

Let A C = 2 r AC=2r where r r is the radius. Then we have Area of Triangle = Area of Circle 2 π = π r 2 2 π = r 2 2 . \text{Area of Triangle}=\dfrac{\text{Area of Circle}}{2\pi}=\dfrac{\pi r^2}{2\pi}=\dfrac{r^2}{2}. Let A C B = θ \angle ACB=\theta . Hence A B = A C sin θ = 2 r sin θ , AB=AC\sin\theta=2r\sin\theta, B C = A C cos θ = 2 r cos θ . BC=AC\cos\theta=2r\cos\theta. Clearly A B C = 9 0 \angle ABC=90^\circ . Hence Area of Triangle = 1 2 × A B × B C = 2 r 2 sin θ cos θ = r 2 2 . \text{Area of Triangle}=\dfrac{1}{2}\times AB\times BC=2r^2\sin\theta\cos\theta=\dfrac{r^2}{2}. 2 sin θ cos θ = sin 2 θ = 1 2 = sin 3 0 . \therefore ~ 2\sin\theta\cos\theta=\sin 2\theta=\dfrac{1}{2}=\sin 30^\circ. Therefore 2 θ = 3 0 θ = 1 5 2\theta = 30^\circ\implies \theta =15^\circ . So the other angle is 9 0 1 5 = 7 5 90^\circ-15^\circ=75^\circ . Hence their difference is 7 5 1 5 = 6 0 75^\circ-15^\circ=\boxed{60^\circ} .

Antonio Fanari
Jul 28, 2014

A = PI/2 - C ; Area(Circle)/Area(Triangle) = 2PI -> sin(2C) = 1/2; 2C = PI/6; C = PI/12 -> 15°; A = PI/2 - PI/12 = (5/12)PI -> 75°; A - C = 60°

Since one of the side of the triangle is the diameter of the circle, it is a right triangle. Let A C = 2 r AC=2r and A C B = θ \angle ACB=\theta , then A B = 2 r sin θ AB=2r \sin \theta and B C = 2 r cos θ BC=2r \cos \theta .So the area of the triangle is 1 2 ( 2 r sin θ ) ( 2 r cos θ ) = 2 r 2 ( sin θ ) ( cos θ ) \dfrac{1}{2}(2r\sin \theta)(2r \cos \theta)=2r^2(\sin \theta)(\cos \theta) . Using the double angle identity, sin 2 x = 2 sin x cos x \sin~2x=2\sin~x\cos~x , we have

A T = r 2 sin 2 θ A_T=r^2 \sin 2\theta

Given in the problem that A C A T = 2 π \dfrac{A_C}{A_T}=2 \pi , so

π r 2 r 2 sin 2 θ = 2 π \dfrac{\pi r^2}{r^2 \sin~2\theta}=2 \pi

1 2 = sin 2 θ \dfrac{1}{2}=\sin 2\theta

2 θ = sin 1 ( 1 2 ) 2\theta=\sin^{-1}\left(\dfrac{1}{2}\right)

2 θ = 30 2 \theta = 30

θ = 15 \theta =15

It follows that C A B = 90 15 = 75 \angle CAB=90-15=75 .

So the desired answer is 70 15 = 70-15= 6 0 \boxed{60^\circ}

Ajit Athle
Aug 26, 2014

Let the circle centre be O to which join B. Now, 2∏=∏R²/(r h) where h is the altitude from B to AC. h = R/2=R sin(30). This implies that / BOA=2*/ BCA=30° or / BCA=15° & / BAC=75° giving us 60° as the required difference.

a 2 + c 2 = b 2 = 4 r 2 . . B u t π r 2 ( 1 / 2 a c ) = 2 π . . a c = r 2 . S i n A = a 2 r = C o s C , C o s A = c 2 r = S i n C C o s ( A C ) = c 2 r a 2 r + a 2 r c 2 r = 2 a c 4 r 2 = 2 r 2 4 r 2 = 1 / 2 = C o s ( 60 ) 60 a^2+c^2=b^2=4r^2..~~But~\dfrac{\pi*r^2}{(1/2*a*c)}=2*\pi~.. ~\therefore~~ a *c=r^2. \\ SinA=\dfrac{a} {2r}=CosC,~~~~~~~~~CosA=\dfrac{c}{2r}=SinC\\~Cos(A-C)=\dfrac{c}{2r}*\dfrac{a}{2r}+\dfrac{a}{2r}*\dfrac{c}{2r}=2*\dfrac{a*c}{4r^2}= ~2*\dfrac{r^2}{4r^2}\\= 1/2=Cos(60)\\ \boxed{60}

This is same as NaveenKmuar Venkataraj, just used latex.

Rifath Rahman
Aug 10, 2014

Let the angles be x and y and AB=b,BC=a. Given that (area of circle)/area of triangle=2 * pi or pi * r^2/{(1/2)ab }=2 * pi.......................(1), Now sin x=a/2r or a=2r * sin x.........(2) And cos x=b/2r or b=2r * cos x....(3) Now putting those into (1) pi * r^2/{(1/2) * (2r * cos x) * (2r * sin x)}=2 * pi or pi * r^2/(2r^2 * sin x * cos x)=2 * pi or pi/(2 * sin x *cos x)=2 * pi or 1/(sin x * cos x)=(2 * 2 * pi)/pi or (sin x * cos x)^2=(1/4)^2 or sin^2 x * cos^2 x=(1/4)^2 or sin^2 x(1-sin^2 x)=1/16 or sin^2 x-sin^4 x=1/16 or 16sin^2 x-16sin^4 x=1 or 0=16sin^4 x-16sin^2 x+1 either sin x=sqrt{(2+sqrt 3)/4} or sinx=sqrt {(2+sqrt 3)/4} so x=(75,15). Now 90(semi circle angle is always 90)+75+y=180 or 90+15+y=180 that makes y=(15,75) So either way its [x-y=75-15=60 or y-x=75-15=60] 60. SO ANSWER IS 60

Jonathan Hoseana
Jul 27, 2014

Ratio of the areas $\frac{2\pi R^2}{AB\cdot BC}=2\pi$ gives $R^2= AB\cdot BC$, while by Pythagorean Theorem we get $AB^2 + BC^2 = 4R^2$. Substituting, $AB^2 + BC^2 = 4AB\cdot BC$. By letting $\tan C=\frac{AB}{BC}=x$, the previous equation can be written as $x^2 - 4x + 1=0$, which can be solved by the quadratic formula to obtain $x= 2 \pm \sqrt{3}\Rightarrow \tan C=2\pm\sqrt{3}$. Thus, $C=15^\circ$ (which gives $A=75^\circ$) or $C=75^\circ$ (which gives $A=15^\circ$). In either case, the answer is $60^\circ$.

Say a,b,c are angles at A,B,C and AB = w, BC = h and AC = 2r Easy to get r.r = w.h from what is given. cos(a-c) = cos(a)cos(c) + sin(a)sin(c) =(h/2r)(w/2r) + (w/2r)(h/2r) substitute rr = wh we get cos(a-c) = 1/2 , a-c = 60deg

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...