Triangle of Tangency

Calculus Level pending

[ Background Information ]

The equation for the yellow curve is: 1 + s i n ( x ) 1+sin(x)

The three black points have lines that are TANGENT to f(x) going through them.

The three tangent lines form a triangle with three colored intersections (The Blue Point, Green Point, and the Red Point).

The coordinates of the three black dots are:

-The leftmost point : (a,f(a))

-The middle point: (a+2,f(a+2))

-The rightmost point: (a+4,f(a+4))

A(x) is the area of the triangle created by the three colored intersections (The Blue Point, Green Point, and the Red Point).

[ Question ]

What is the instantaneous change of A(x) when a = 32.25? Then nest the answer in the triangle area function.

[ Answer Submission ]

What is A(32.25)?

Pick the answer that is closest to ( A(32.25) - 9.396 )!

[ Additional Information ]

If there is something wrong with the problem(ex. Problem is not explained properly; Answer is incorrect; etc), don't hesitate to DM me on brilliant.

0.738 1.337 1.715 0.515 0.395

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S. P.
Jan 20, 2020

[ Declare Functions ]

f(x) = 1+sin(x)

f'(x)=cos(x)

[ Tangent Lines to the Three Points ]

l 1 ( x ) = f ( a ) x + ( f ( a ) a + f ( a ) ) l_{1}\left(x\right)=f'\left(a\right)x+\left(-f'\left(a\right)*a+f\left(a\right)\right)

l 2 ( x ) = f ( a + 2 ) x + ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) l_{2}\left(x\right)=f'\left(a+2\right)x+\left(-f'\left(a+2\right)*(a+2)+f\left(a+2\right)\right)

l 3 ( x ) = f ( a + 4 ) x + ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) l_{3}\left(x\right)=f'\left(a+4\right)x+\left(-f'\left(a+4\right)*(a+4)+f\left(a+4\right)\right)

[ Use of Linear Algebra to find Intersections of the Tangent Lines ]

Point A: [ ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a + 2 ) \frac{\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)-\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a+2\right)} , f ( a + 4 ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a + 2 ) \frac{f'\left(a+4\right)\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)-f'\left(a+2\right)\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a+2\right)} ]

Point B: [ ( f ( a ) a + f ( a ) ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a ) \frac{\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a\right)} , f ( a + 4 ) ( f ( a ) a + f ( a ) ) f ( a ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a ) \frac{f'\left(a+4\right)\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-f'\left(a\right)\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a\right)} ]

Point C: [ ( f ( a ) a + f ( a ) ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) f ( a ) \frac{\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)}{f'\left(a+2\right)-f'\left(a\right)} , f ( a + 2 ) ( f ( a ) a + f ( a ) ) f ( a ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) f ( a ) \frac{f'\left(a+2\right)\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-f'\left(a\right)\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)}{f'\left(a+2\right)-f'\left(a\right)} ]

[ Using Distance Formula to Calculate Side Lengths ]

s 1 = ( ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a + 2 ) ( f ( a ) a + f ( a ) ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a ) ) 2 + ( f ( a + 4 ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) ( f ( a + 4 ) c + f ( a + 4 ) ) f ( a + 4 ) f ( a + 2 ) f ( a + 4 ) ( f ( a ) a + f ( a ) ) f ( a ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a ) ) 2 s_{1}=\sqrt{\left(\frac{\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)-\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a+2\right)}-\frac{\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a\right)}\right)^{2}+\left(\frac{f'\left(a+4\right)\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)-f'\left(a+2\right)\left(-f'\left(a+4\right)c+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a+2\right)}-\frac{f'\left(a+4\right)\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-f'\left(a\right)\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a\right)}\right)^{2}}

s 2 = ( ( f ( a ) a + f ( a ) ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a ) ( f ( a ) a + f ( a ) ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) f ( a ) ) 2 + ( f ( a + 4 ) ( f ( a ) a + f ( a ) ) f ( a ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a ) f ( a + 2 ) ( f ( a ) a + f ( a ) ) f ( a ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) f ( a ) ) 2 s_{2}=\sqrt{\left(\frac{\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a\right)}-\frac{\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)}{f'\left(a+2\right)-f'\left(a\right)}\right)^{2}+\left(\frac{f'\left(a+4\right)\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-f'\left(a\right)\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a\right)}-\frac{f'\left(a+2\right)\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-f'\left(a\right)\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)}{f'\left(a+2\right)-f'\left(a\right)}\right)^{2}}

s 3 = ( ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a + 2 ) ( f ( a ) a + f ( a ) ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) f ( a ) ) 2 + ( f ( a + 4 ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) ( f ( a + 4 ) ( a + 4 ) + f ( a + 4 ) ) f ( a + 4 ) f ( a + 2 ) f ( a + 2 ) ( f ( a ) a + f ( a ) ) f ( a ) ( f ( a + 2 ) ( a + 2 ) + f ( a + 2 ) ) f ( a + 2 ) f ( a ) ) 2 s_{3}=\sqrt{\left(\frac{\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)-\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a+2\right)}-\frac{\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)}{f'\left(a+2\right)-f'\left(a\right)}\right)^{2}+\left(\frac{f'\left(a+4\right)\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)-f'\left(a+2\right)\left(-f'\left(a+4\right)\cdot\left(a+4\right)+f\left(a+4\right)\right)}{f'\left(a+4\right)-f'\left(a+2\right)}-\frac{f'\left(a+2\right)\left(-f'\left(a\right)\cdot a+f\left(a\right)\right)-f'\left(a\right)\left(-f'\left(a+2\right)\cdot\left(a+2\right)+f\left(a+2\right)\right)}{f'\left(a+2\right)-f'\left(a\right)}\right)^{2}}

[ Heron's Formula to find area. ]

p = s 1 + s 2 + s 3 2 p=\frac{s_{1}+s_{2}+s_{3}}{2}

A(x) = p ( p s 1 ) ( p s 2 ) ( p s 3 ) \sqrt{p\left(p-s_{1}\right)\left(p-s_{2}\right)\left(p-s_{3}\right)}

A(32.25) = 10.134

10.134 - 9.396 = 0.738

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...