Triangle, perimeter = area?

Geometry Level 4

Suppose the triangle A B C ABC with integer side lengths is such that its perimeter is 60 unit and its area is 60 unit 2 ^2 . Find the length of the longest side.

A related problem .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P e r i m e t e r = a + b + c = 60. S = 30. A r e a = S ( S a ) ( S b ) ( S c ) = 60. 6 0 2 = 30 ( 30 a ) ( 30 b ) ( 30 c ) . B u t 6 0 2 30 = 2 3 3 5. a , b , c a r e i n t e g e r s , ( 1 ) o n e o f t h e m , s a y a i s d i v i s i b l e b y 15 8 = ( 2 a 15 ) ( 30 b ) ( 30 c ) . S i n c e a < 30 , o n l y a = 15 i s p o s s i b l e . S o b + c = 60 a = 45. S o W L O G s a y b i s o d d a n d c i s e v e n t h e n ( 30 b ) ( 30 c ) = 8 m u s t h a v e b = 29 a n d c = 22. B u t t h e n a + b + c = 15 + 29 + 22 60. N o s o l u t i o n . ( 2 ) O r W L O G s a y a d i v i s i b l e b y 5 a n d b b y 3. 8 = ( 6 a 5 ) ( 10 b 3 ) ( 30 c ) . S o p r o b a b l e ( 6 a 5 ) = 4 , 2 , o r 1 ; ( 10 b 3 ) = 1 , 2 , 4 , o r 8. ( 30 c ) = 1 , 2 , 4 , o r 8............... ( 3 ) . a , b , c < 30. S o p r o b a b l e s a = 25 , 20 , 15 , 10 , 5. B u t b y ( 3 ) c o r r e s p o n d i n g ( 6 a 5 ) o n l y = 1 , 2 , o r 4 a r e p r o b a b l e . S o a = 25 , 20 , o r 10 o n l y a r e p r o b a b l e . A g a i n p r o b a b l e b = 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 , 27. B u t b y ( 3 ) c o r r e s p o n d i n g ( 10 b 3 ) o n l y = 1 , 2 , 4 , o r 8 a r e p r o b a l e . S o b = 6 , 18 , 24 , 27 o n l y a r e p r o b a b l e . L e t u s s t a r t t r i a l s w i t h I f a = 25 , ( 6 a 5 ) = 1. ( 1 ) ( 10 b 3 ) ( 30 c ) = 8. I f b = 6 , 8 = ( 1 ) ( 10 6 3 ) ( 30 c ) = 8 ( 30 c ) . S o ( 30 c ) = 1 a n d c = 29. S o a + b + c = 25 + 6 + 29 = 60 a s r e q u i r e d . S o t h e l o n g e s t s i d e = 29. Perimeter=a+b+c=60.~~~\therefore~S=30. \\ Area=\sqrt{S(S-a)(S-b)(S-c)}=60.\\ \therefore~60^2=30(30-a)(30-b)(30-c).\\ But~\dfrac{60^2}{30}=2^3*3*5.~~~\\ a,b,c~are~integers, \\ ~~~\\ (1)~one~of~them,~say~a~is~divisible~by~15\\ \therefore~8=(2-\dfrac a {15})(30-b)(30-c).\\ Since~a<30,~only~a=15~is~possible.~~So~~b+c=60-a=45.\\ So ~WLOG~say~b~is~odd~and~c~is~even~then~~(30-b)(30-c)=8~must ~have~b=29~and~c=22.\\ But~then~a+b+c=15+29+22\neq60. ~No~solution.\\ ~~~\\ (2)~Or~~~WLOG~say~a~divisible~by~5~~~and~~~b~by~3.\\ \implies~~~\color{#3D99F6}{ 8=(6-\dfrac a 5)(10-\dfrac b 3)(30-c)}.\\ So~probable~ (6-\dfrac a 5)=4,~2,~or~1;~~~~~ (10-\dfrac b 3)=1,~2,~4,~or~8.~~~~~ (30-c)=1,~2,~4,~or~8...............(3).\\ ~~~~\\ a,~b,~c<30.\\ So~probables~~~~a=25,20,15,10,5.\\ But~by~(3)~corresponding~~(6-\dfrac a 5)~~only=1,2,~or~4~are~probable.\\ So~\color{#20A900}{a=25, ~20,~or~10}~only~are~probable.\\ Again~probable~~~~b = 3,6,9,12,15,18,21,24,27.\\ But~by~(3)~corresponding~~(10-\dfrac b 3)~~only=1,2,4,~or~8~are~probale.\\ So~\color{#20A900}{b=6,~18,~24,~27}~only~are~probable.\\ Let~us~start~trials~with~\Large~~If~a=25,~~ (6-\dfrac a 5)=1.\\ \therefore~(1)(10-\dfrac b 3)(30-c)=8.\\ ~~~~~If~b=6,~~ 8=(1) (10-\dfrac 6 3)(30-c)=8*(30-c).~~So~(30-c)=1~~and~~~c=29.\\ So~a+b+c=25+6+29=60 ~~as~required.\\ So~the~longest ~side~=\Large~\color{#D61F06}{29}.

F r o m ( 3 ) w e m a y p r o c e e d a s f o l l o w s t o g o t h r o u g h a l l p r o b a b i l i t i e s . ( 6 a 5 ) a ( 10 b 3 ) b ( 30 c ) c a + b + c S o l u t i o n ? 1 25 1 27 8 22 74 N O 2 24 4 26 75 N O 4 18 2 28 71 N O 25 8 6 1 29 60 Y e s 2 20 1 27 4 26 73 N O 2 24 2 28 72 N O 4 18 1 29 67 N O 4 10 1 27 2 28 65 N O 2 24 1 29 63 N O From (3) ~we~may~proceed ~as~follows~to~ go~ through~all~probabilities.\\ \begin{array}{c} \\ \hline (6-\dfrac a 5)& a &~&(10-\dfrac b 3)& b &~&(30-c)& c &~&a+b+c&~&Solution?&\\ \hline 1 &\color{#20A900}{25}&~& 1 & \color{#20A900}{27} &~& 8 & \color{#20A900}{22} &~& 74 &~& NO &\\ & &~& 2 & \color{#20A900}{24} &~& 4 & \color{#20A900}{26} &~& 75 &~& NO &\\ & &~& 4 & \color{#20A900}{18} &~& 2 & \color{#20A900}{28} &~& 71 &~& NO &\\ & \color{#D61F06}{25} &~& 8 & \color{#D61F06}{6} &~& 1 & \color{#D61F06}{29 } &~& \color{#D61F06}{60}&~&\color{#D61F06}{Yes}&\\ 2 &\color{#20A900}{20}&~& 1 & \color{#20A900}{27} &~& 4 & \color{#20A900}{26} &~& 73 &~& NO &\\ & &~& 2 & \color{#20A900}{24} &~& 2 & \color{#20A900}{28 } &~& 72 &~& NO &\\ & &~& 4 & \color{#20A900}{18} &~& 1 & \color{#20A900}{29} &~& 67 &~& NO &\\ 4 &\color{#20A900}{10} &~& 1 & \color{#20A900}{27} &~& 2 & \color{#20A900}{28} &~& 65 &~& NO &\\ & &~& 2 & \color{#20A900}{24} &~& 1 & \color{#20A900}{29} &~& 63 &~& NO &\\ \hline \end{array}

Cheong Sik Feng
Jul 11, 2017

Let a, b and c be the length of the sides of the triangle.

Using Heron's formula for finding area

S = a + b + c 2 S=\frac{a+b+c}{2}

S ( S a ) ( S b ) ( S c ) = 60 u n i t s 2 \sqrt{S(S-a)(S-b)(S-c)}=60~units^2

Since a + b + c = 60 u n i t s ( 1 ) a+b+c=60~units---(1)

S = 30 u n i t s S=30~units

30 ( 30 a ) ( 30 b ) ( 30 c ) = 60 ( 2 ) \sqrt{30(30-a)(30-b)(30-c)}=60---(2)

From ( 2 ) (2)

30 ( 30 a ) ( 30 b ) ( 30 c ) = 3600 u n i t s 2 30(30-a)(30-b)(30-c)=3600~units^2

( 30 a ) ( 30 b ) ( 30 c ) = 120 u n i t s 2 (30-a)(30-b)(30-c)=120~units^2

This means that ( a , b , c < 30 ) (a,b,c < 30) and ( ( 30 a ) , ( 30 b ) , ( 30 c ) < 30 ) ((30-a),(30-b),(30-c)<30)

There are only 9 possible values of 30 a , 30 b , 30 c < 30 30-a, 30-b,30-c<30

From ( 1 ) (1)

( 30 a ) + ( 30 b ) + ( 30 c ) = 30 u n i t s (30-a)+(30-b)+(30-c)=30~units

From the 9 possibilities, only ( 1 , 5 , 24 ) (1, 5, 24) is in agreement with ( 30 a ) + ( 30 b ) + ( 30 c ) = 30 u n i t s (30-a)+(30-b)+(30-c)=30~units

Therefore the longest side is 30 1 = 29 u n i t s 30-1=29~units

What are the 9 possible values ? Can you please explain how you get them ? Thanks.

Niranjan Khanderia - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...