Suppose the triangle A B C with integer side lengths is such that its perimeter is 60 unit and its area is 60 unit 2 . Find the length of the longest side.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let a, b and c be the length of the sides of the triangle.
Using Heron's formula for finding area
S = 2 a + b + c
S ( S − a ) ( S − b ) ( S − c ) = 6 0 u n i t s 2
Since a + b + c = 6 0 u n i t s − − − ( 1 )
S = 3 0 u n i t s
3 0 ( 3 0 − a ) ( 3 0 − b ) ( 3 0 − c ) = 6 0 − − − ( 2 )
From ( 2 )
3 0 ( 3 0 − a ) ( 3 0 − b ) ( 3 0 − c ) = 3 6 0 0 u n i t s 2
( 3 0 − a ) ( 3 0 − b ) ( 3 0 − c ) = 1 2 0 u n i t s 2
This means that ( a , b , c < 3 0 ) and ( ( 3 0 − a ) , ( 3 0 − b ) , ( 3 0 − c ) < 3 0 )
There are only 9 possible values of 3 0 − a , 3 0 − b , 3 0 − c < 3 0
From ( 1 )
( 3 0 − a ) + ( 3 0 − b ) + ( 3 0 − c ) = 3 0 u n i t s
From the 9 possibilities, only ( 1 , 5 , 2 4 ) is in agreement with ( 3 0 − a ) + ( 3 0 − b ) + ( 3 0 − c ) = 3 0 u n i t s
Therefore the longest side is 3 0 − 1 = 2 9 u n i t s
What are the 9 possible values ? Can you please explain how you get them ? Thanks.
Problem Loading...
Note Loading...
Set Loading...
P e r i m e t e r = a + b + c = 6 0 . ∴ S = 3 0 . A r e a = S ( S − a ) ( S − b ) ( S − c ) = 6 0 . ∴ 6 0 2 = 3 0 ( 3 0 − a ) ( 3 0 − b ) ( 3 0 − c ) . B u t 3 0 6 0 2 = 2 3 ∗ 3 ∗ 5 . a , b , c a r e i n t e g e r s , ( 1 ) o n e o f t h e m , s a y a i s d i v i s i b l e b y 1 5 ∴ 8 = ( 2 − 1 5 a ) ( 3 0 − b ) ( 3 0 − c ) . S i n c e a < 3 0 , o n l y a = 1 5 i s p o s s i b l e . S o b + c = 6 0 − a = 4 5 . S o W L O G s a y b i s o d d a n d c i s e v e n t h e n ( 3 0 − b ) ( 3 0 − c ) = 8 m u s t h a v e b = 2 9 a n d c = 2 2 . B u t t h e n a + b + c = 1 5 + 2 9 + 2 2 = 6 0 . N o s o l u t i o n . ( 2 ) O r W L O G s a y a d i v i s i b l e b y 5 a n d b b y 3 . ⟹ 8 = ( 6 − 5 a ) ( 1 0 − 3 b ) ( 3 0 − c ) . S o p r o b a b l e ( 6 − 5 a ) = 4 , 2 , o r 1 ; ( 1 0 − 3 b ) = 1 , 2 , 4 , o r 8 . ( 3 0 − c ) = 1 , 2 , 4 , o r 8 . . . . . . . . . . . . . . . ( 3 ) . a , b , c < 3 0 . S o p r o b a b l e s a = 2 5 , 2 0 , 1 5 , 1 0 , 5 . B u t b y ( 3 ) c o r r e s p o n d i n g ( 6 − 5 a ) o n l y = 1 , 2 , o r 4 a r e p r o b a b l e . S o a = 2 5 , 2 0 , o r 1 0 o n l y a r e p r o b a b l e . A g a i n p r o b a b l e b = 3 , 6 , 9 , 1 2 , 1 5 , 1 8 , 2 1 , 2 4 , 2 7 . B u t b y ( 3 ) c o r r e s p o n d i n g ( 1 0 − 3 b ) o n l y = 1 , 2 , 4 , o r 8 a r e p r o b a l e . S o b = 6 , 1 8 , 2 4 , 2 7 o n l y a r e p r o b a b l e . L e t u s s t a r t t r i a l s w i t h I f a = 2 5 , ( 6 − 5 a ) = 1 . ∴ ( 1 ) ( 1 0 − 3 b ) ( 3 0 − c ) = 8 . I f b = 6 , 8 = ( 1 ) ( 1 0 − 3 6 ) ( 3 0 − c ) = 8 ∗ ( 3 0 − c ) . S o ( 3 0 − c ) = 1 a n d c = 2 9 . S o a + b + c = 2 5 + 6 + 2 9 = 6 0 a s r e q u i r e d . S o t h e l o n g e s t s i d e = 2 9 .
F r o m ( 3 ) w e m a y p r o c e e d a s f o l l o w s t o g o t h r o u g h a l l p r o b a b i l i t i e s . ( 6 − 5 a ) 1 2 4 a 2 5 2 5 2 0 1 0 ( 1 0 − 3 b ) 1 2 4 8 1 2 4 1 2 b 2 7 2 4 1 8 6 2 7 2 4 1 8 2 7 2 4 ( 3 0 − c ) 8 4 2 1 4 2 1 2 1 c 2 2 2 6 2 8 2 9 2 6 2 8 2 9 2 8 2 9 a + b + c 7 4 7 5 7 1 6 0 7 3 7 2 6 7 6 5 6 3 S o l u t i o n ? N O N O N O Y e s N O N O N O N O N O