Triangle perimeter from angle bisectors - 1

Geometry Level 3

In A B C \triangle ABC , the triangle angle bisectors meet at point G G . If A G = 6 AG = 6 , B G = 2 BG = 2 , C G = 3 CG = 3 , find the perimeter of A B C \triangle ABC .


The answer is 19.62.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We note that G G is the incenter of A B C \triangle ABC . Let the inradius be r r . The side lengths of A B C \triangle ABC are:

{ a = 4 r 2 + 9 r 2 b = 9 r 2 + 36 r 2 c = 4 r 2 + 36 r 2 s = a + b + c 2 = 4 r 2 + 9 r 2 + 36 r 2 \begin{cases} a = \sqrt{4-r^2} + \sqrt{9-r^2} \\ b = \sqrt{9-r^2} + \sqrt{36-r^2} \\ c = \sqrt{4-r^2} + \sqrt{36-r^2} \end{cases} \implies s = \dfrac {a+b+c}2 = \sqrt{4-r^2} + \sqrt{9-r^2} + \sqrt{36-r^2}

We note that area of A B C \triangle ABC is s r sr and by Heron's formula :

s r = s ( s a ) ( s b ) ( s c ) s r 2 = ( s a ) ( s b ) ( s c ) r 2 ( 4 r 2 + 9 r 2 + 36 r 2 ) = 4 r 2 9 r 2 36 r 2 \begin{aligned} sr & = \sqrt{s(s-a)(s-b)(s-c)} \\ \implies sr^2 & = (s-a)(s-b)(s-c) \\ r^2 \left(\sqrt{4-r^2} + \sqrt{9-r^2} + \sqrt{36-r^2} \right) & = \sqrt{4-r^2} \cdot \sqrt{9-r^2} \cdot \sqrt{36-r^2} \end{aligned}

Solving for r r (I did it numerically), we have r 1.458757077 r \approx 1.458757077 and perimeter 2 s = 2 ( 4 r 2 + 9 r 2 + 36 r 2 ) 19.6 2s = 2 \left(\sqrt{4-r^2} + \sqrt{9-r^2} + \sqrt{36-r^2} \right) \approx \boxed{19.6} .

Ajit Athle
Jul 1, 2020

Use the angle bisector theorem to write down the following equations; bc((b+c)²-a²)=[6(a+b+c)]² ab((a+b)²-c²)=[3(a+b+c)]² ca((a+c)²-b²)=[2(a+b+c)]² p=a+b+c These yield: a = 3.989, b = 8.441 & c = 7.188 and p = 19.6193

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...