Triangle side

Geometry Level 3

Find missing side


The answer is 7.141.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Relevant wiki: Pythagorean Theorem

Let the triangle be A B C \triangle ABC with altitude A E = h AE =h , the unknown side A D = x AD=x and C E = a CE=a . Then by Pythagorean theorem,

{ h 2 + a 2 = 8 2 . . . ( 1 ) h 2 + ( 6 a ) 2 = 7 2 . . . ( 2 ) h 2 + ( a 2 ) 2 = x 2 . . . ( 3 ) \begin{cases} h^2 + a^2 = 8^2 & ...(1) \\ h^2 + (6-a)^2 = 7^2 & ...(2) \\ h^2 + (a-2)^2 = x^2 & ...(3) \end{cases}

From ( 2 ) (2) :

h 2 + a 2 12 a + 36 = 7 2 Note ( 1 ) : h 2 + a 2 = 8 2 64 12 a + 36 = 49 a = 17 4 \begin{aligned} {\color{#3D99F6}h^2 + a^2} - 12a+36 & = 7^2 & \small \color{#3D99F6} \text{Note }(1): h^2+a^2 = 8^2 \\ {\color{#3D99F6}64} - 12a+36 & = 49 \\ \implies a & = \frac {17}4 \end{aligned}

From ( 5 ) (5) :

x 2 = h 2 + a 2 4 a + 4 Note ( 2 ) : a = 17 4 = 64 4 × 17 4 + 4 = 51 x = 51 7.141 \begin{aligned} x^2 & = {\color{#3D99F6}h^2+a^2} - 4{\color{#D61F06}a} + 4 & \small \color{#D61F06} \text{Note }(2): a = \frac {17}4 \\ & = {\color{#3D99F6}64} - 4\times {\color{#D61F06}\frac {17}4} + 4 \\ & = 51 \implies x & = \sqrt{51} \approx \boxed{7.141} \end{aligned}

Same as Brian Charlesworth and Edwin Gray. Equating Cos of bottom left angle due to triangles 7-4-? and 7-6-8,
49 + 16 ? 2 2 7 4 = 49 + 36 64 2 7 6 65 ? 2 2 = 21 3 ? = 51 = 7.141428. \dfrac{49+16-?^2}{2*7*4}=\dfrac{49+36-64}{2*7*6}\\ \implies~\dfrac{65-?^2}{2}=\dfrac{21}{3}\\ \therefore~?=\sqrt{51}=7.141428. L a T e X LaTeX

Edwin Gray
Sep 12, 2018

Calculate cos(A), (<A opposite side = 8) by law of cosines. 64 = 36 + 49 - 2 7 6 cos(A) gives cos(A) = 1/4. Now repeat with the desired length being calculated: y^2 = 49 + 16 - 2 7 4 .25 = 51, so y = sqrt(51) = 7.141. Ed Gray

Let the lower left angle of the given triangle be θ \theta . Then by the cosine rule used on the full triangle we find that

8 2 = 6 2 + 7 2 2 × 6 × 7 × cos ( θ ) 84 cos ( θ ) = 36 + 49 64 = 21 cos ( θ ) = 1 4 8^{2} = 6^{2} + 7^{2} - 2 \times 6 \times 7 \times \cos(\theta) \Longrightarrow 84 \cos(\theta) = 36 + 49 - 64 = 21 \Longrightarrow \cos(\theta) = \dfrac{1}{4} .

Next, letting the sought after side length be x x and using the cosine rule on the triangle with side lengths 4 , 7 , x 4,7,x we find that

x 2 = 4 2 + 7 2 2 × 4 × 7 × cos ( θ ) x 2 = 65 56 × 1 4 = 65 14 = 51 x = 51 x^{2} = 4^{2} + 7^{2} - 2 \times 4 \times 7 \times \cos(\theta) \Longrightarrow x^{2} = 65 - 56 \times \dfrac{1}{4} = 65 - 14 = 51 \Longrightarrow x = \boxed{\sqrt{51}} .

Aaghaz Mahajan
Jul 3, 2018

A simple application of Stewart's theorem........

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...