Triangle trials

Geometry Level 2

Triangle A B C ABC with its centroid at G G has side lengths A B = 15 , B C = 18 , A C = 25 AB=15, BC=18,AC=25 . D D is the midpoint of B C BC .

The length of G D GD can be expressed as a d b \frac{ a \sqrt{d} } { b} , where a a and b b are coprime positive integers and d d is a square-free positive integer.

Find a + b + d + 1 a + b + d + 1 .


The answer is 92.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

We find A D AD using a formula for the medians derived from Stewart's Theorem:

A D = 2 ( A B 2 + A C 2 ) B C 2 2 AD=\dfrac{\sqrt{2(AB^2+AC^2)-BC^2}}{2}

A D = 2 ( 1 5 2 + 2 5 2 ) 1 8 2 2 AD=\dfrac{\sqrt{2(15^2+25^2)-18^2}}{2}

A D = 1376 2 = 2 86 AD=\dfrac{\sqrt{1376}}{2}=2\sqrt{86}

Now, since the medians cut themselves in the centroid in a ratio of 2 : 1 2:1 from the vertex to the midpoint, we have:

G D = A D 3 = 2 86 3 GD=\dfrac{AD}{3}=\dfrac{2\sqrt{86}}{3}

Hence, a = 2 a=2 , b = 3 b=3 , d = 86 d=86 and a + b + d + 1 = 92 a+b+d+1=\boxed{92} .

Done using Appolonius Theorem too :D

Yash Singhal - 6 years, 9 months ago

Same way except for the fact I used Appolonius theorem to derive the median length :D

Krishna Ar - 6 years, 9 months ago

Did same but derived the median length formula using Vectors.

Aayush Gupta - 1 year, 3 months ago

its solution is not good enough to understand

Hayam Senior - 6 years, 9 months ago

Log in to reply

Google Stewarts theorem

Trevor Arashiro - 6 years, 9 months ago

B is an obtuse angle. From A drop perpendicular AE to meet CB extended at E..
Let AE=h , AD=x, BE=n.
h 2 = 1 5 2 n 2 a l s o = 2 5 2 ( 18 + n ) 2 n = 19 9 . x 2 = h 2 + ( n + 9 ) 2 = 1 5 2 n 2 + ( n + 9 ) 2 \\~\\ \displaystyle{ h^2 =15^2 - n^2~~also~~=25^2 - (18+n )^2 ~~~~~~~\therefore~n=\dfrac{19}{9}.\\ \therefore~~~x^2=h^2 +(n+9)^2=15^2 - n^2+(n+9)^2} \\
x 2 = 225 + 18 n + 81 = 344 = ( 2 86 ) 2 . G D = x / 3 = 2 3 86 a + b + d + 1 = 2 + 3 + 86 + 1 = 92 92 \displaystyle{\implies ~ x^2=225+18n+81=344=(2*\sqrt{ 86 })^2. \\GD=x/3=\dfrac{2}{3}* \sqrt {86}\\ a+b+d+1=2+3+86+1=92 } \\ \boxed {92}


this method is so easy to understand

Hayam Senior - 6 years, 9 months ago
William Chau
Sep 7, 2014

By Stewart's theorem, man+dad = bmb+cnc, where m = BD, n = DC, a = BC, b = AC, c = AB, and d = AD. So

18 * 9^2+18 * d^2 = 9 * 25^2+9 * 15^2,

d = 2 * sqrt(86).

Therefore GD = d/3 = 2 * sqrt(86)/3. Hence the answer is 2+3+86+1 = 92.

Rifath Rahman
Sep 14, 2014

Use Appolonius theorem,find the median 2 * sqrt 86,then 1/3 of it is (2 * 86)/3,so 2+3+86+1=92

Antonio Fanari
Sep 6, 2014

Carnot Theorem applied to angle(A) = angle(CAB), leads to:

cos(A) = (|AB|^2 + |AC|^2 - |BC|^2)/(2|AB||AC|);

cos(A) = (15^2 + 25^2 - 18^2)/(2 15 25) = 263/375;

if we denote C1 the projection on axis x of a system of coordinates

(O,x,y),

O := A, x // AB, y ⊥ x in A,

|CC1| = |AC|sin(A) = 25√(1 - (263/375)^2) = √(375^2 - 263^2)/15;

the coordinates of point C are:

xc = |AC|cos(A) = 25*263/375 = 263/15;

yc = |CC1| = √(375^2 - 263^2)/15;

the coordinates of the centroid G are:

xg = (xa + xb + xc)/3 = (0 + 15 + 263/15)/3 = 488/45;

yg = (ya + yb + yc)/3 = (0 + 0 + √(375^2 - 263^2)/15)/3 = √(375^2 -

263^2)/45;

the midpoint D between B and C has coordinates:

xd = (xb + xc)/2 = (15 + 263/15)/2 = 488/30;

yd = (yb + yc)/2 = (0 + √(375^2 - 263^2)/15)/2 = √(375^2 - 263^2)/30;

|AD| = √((xd - xa)^2 + (yd - ya)^2);

|AD| = √((488/30)^2 + (375^2 - 263^2)/30^2) = 2√86;

|GD| = |AD|/3 = (2/3)√86 = (a/b)√d;

the question is the value of a + b + d + 1, so:

a + b + d + 1 = 2 + 3 + 86 + 1 = 92

If u put a \( in front of every line and a \ ) (without the space) at the end of each line it will look much nicer. Eg x+3*2= x + 3 2 x+3*2

Trevor Arashiro - 6 years, 9 months ago
Chew-Seong Cheong
Aug 30, 2014

The coordinates of centroid G G are given by:

x G = x A + x B + x C 3 , y G = y A + y B + y C 3 x_G = \cfrac{x_A+x_B+x_C}{3}, \quad \quad y_G = \cfrac{y_A+y_B+y_C}{3}

Let B ( 0 , 0 ) B(0,0) , then C ( 18 , 0 ) C(18,0) and D ( 9 , 0 ) D(9,0) . We have:

x A 2 + y A 2 = A B 2 = 1 5 2 = 225 . . . ( 1 ) x_A^2+y_A^2 = AB^2 = 15^2 = 225\quad ...(1)

( 18 x A ) 2 + y A 2 = A C 2 = 2 5 2 = 625 . . . ( 2 ) (18-x_A)^2+y_A^2 = AC^2 = 25^2 = 625\quad ...(2)

( 2 ) ( 1 ) : 342 36 x A = 400 x A = 76 36 = 19 9 (2)-(1): 342 - 36x_A = 400 \quad \Rightarrow x_A = \cfrac{-76}{36} = \cfrac{-19}{9}

Substitute x A x_A in equation (1):

( 19 9 ) 2 + y A 2 = 225 y A = 225 361 81 = 2 9 4466 \left(\cfrac{-19}{9}\right)^2 + y_A^2 = 225\quad \Rightarrow y_A = \sqrt{225-\cfrac{361}{81}} = \cfrac{2}{9}\sqrt{4466}

Therefore,

x G = 19 9 + 0 + 18 3 y G = 2 9 4466 + 0 + 0 3 x_G = \cfrac{\frac{-19}{9}+0+18}{3}\quad \quad y_G = \cfrac{\frac{2}{9}\sqrt{4466}+0+0}{3}

= 143 27 = 2 4466 27 \quad \quad = \cfrac{143}{27}\quad \quad \quad \quad \quad \quad \quad = \cfrac{2\sqrt{4466}}{27}

The length G D = ( x G x D ) 2 + ( y G y D ) 2 GD = \sqrt{(x_G-x_D)^2+(y_G-y_D)^2}

= ( 143 27 9 ) 2 + ( 2 4466 27 0 ) 2 \quad \quad \quad \quad \quad \quad = \sqrt{(\frac{143}{27}-9)^2+(\frac{2\sqrt{4466}}{27}-0)^2}

= ( 100 27 ) 2 + ( 2 4466 27 ) 2 \quad \quad \quad \quad \quad \quad = \sqrt{(\frac{-100}{27})^2+(\frac{2\sqrt{4466}}{27})^2}

= 1 27 10000 + 17864 \quad \quad \quad \quad \quad \quad = \cfrac{1}{27} \sqrt{10000+17864}

= 1 27 27864 = 18 27 86 = 2 3 86 \quad \quad \quad \quad \quad \quad = \cfrac{1}{27} \sqrt{27864} = \cfrac{18}{27} \sqrt{86} = \cfrac{2}{3} \sqrt{86}

Therefore, a = 2 , b = 3 , c = 1 , d = 86 a=2,\space b=3,\space c=1,\space d=86 .

a + b + c + d = 92 \Rightarrow a+b+c+d = \boxed{92}

Ya, stupid me. You mean cosine rule? The answer as follows:

Let A D = b AD=b , then G D = 1 3 b GD=\frac{1}{3}b . Let A B C = θ \angle ABC=\theta , then we have:

2 5 2 = 1 5 2 + 1 8 2 2 ( 15 ) ( 18 ) cos θ . . . ( 1 ) 25^2 = 15^2 + 18^2 - 2(15)(18) \cos{\theta}\quad ...(1)

Similarly,

b 2 = 1 5 2 + 9 2 2 ( 15 ) ( 9 ) cos θ . . . ( 2 ) b^2 = 15^2 + 9^2 - 2(15)(9) \cos{\theta}\quad ...(2)

2 × ( 2 ) ( 1 ) : 2 b 2 625 = 225 162 b = 344 = 2 86 2\times (2)-(1):\quad 2b^2 - 625 = 225 - 162\quad \Rightarrow b = \sqrt{344} = 2\sqrt{86}

Therefore, G D = 1 3 b = 2 3 86 GD = \frac{1}{3}b = \frac{2}{3}\sqrt{86}

a = 2 \Rightarrow a=2 , b = 3 b=3 , c = 1 c=1 and d = 86 d=86 ; and a + b + c + d = 2 + 3 + 1 + 86 = 92 a+b+c+d = 2 + 3 + 1 + 86 = \boxed{92}

Chew-Seong Cheong - 6 years, 9 months ago

Log in to reply

Wow...I am amazed...No, you are not stupid, I am stupid,,,there are so many ways to do this relatively simple problem, you have shown me two ....Alan has shown me one...and I too have one...such an enriching experience! :D

Jayakumar Krishnan - 6 years, 9 months ago

This could have been simplified, if you did not use co-ordinates. Instead you could have used Appolonius

Jayakumar Krishnan - 6 years, 9 months ago

I agree, its a little clumsy to use coordinates

Aatif Syed - 6 years, 9 months ago

Long method but a nice idea.

Niranjan Khanderia - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...