Triangles (2).

Geometry Level 5

Let P P be a variable point inside A B C \triangle ABC and let D , E , D,E, and F F be the feet of perpendiculars from P P to sides B C , C A , BC,CA, and A B , AB, respectively. If B C P D + C A P E + A B P F a s 2 A , \dfrac{BC}{PD} + \dfrac{CA}{PE} + \dfrac{AB}{PF} \ge \dfrac{a s^2}{A}, where s s and A A denote the semi-perimeter and the area of A B C , \triangle ABC, respectively, then find the maximum value of a . a.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let : 3 , 2 , 1 \triangle _{3} , \triangle _{2} , \triangle _ {1} be the areas of triangles BPC, CPA & BPA \text{BPC, CPA \& BPA} respectively .

So,

2 3 = BC × PD 2 \triangle _{3}=\text{BC} \times \text{PD}

2 2 = AC × PE 2 \triangle _{2}=\text{AC} \times \text{PE}

2 1 = AB × PF 2 \triangle _{1}=\text{AB} \times \text{PF}

Using above relations , we get :

BC PD + CA PE + AB PF = AB 2 2 1 + BC 2 2 3 + CA 2 2 2 \dfrac{\text{BC}}{\text{PD}} + \dfrac{\text{CA}}{\text{PE}} + \dfrac{\text{AB}}{\text{PF}} = \dfrac{\text{AB}^2}{2\triangle _{1}} +\dfrac{\text{BC}^2}{2\triangle _{3}} + \dfrac{\text{CA}^2}{2\triangle _{2}}

Using Titu's Lemma , we get :

AB 2 2 1 + BC 2 2 3 + CA 2 2 2 ( AB + BC + CA ) 2 2 ( 1 + 2 + 3 ) \dfrac{\text{AB}^2}{2\triangle _{1}} +\dfrac{\text{BC}^2}{2\triangle _{3}} + \dfrac{\text{CA}^2}{2\triangle _{2}} \ge \dfrac{(\text{AB}+\text{BC}+\text{CA})^2}{2(\triangle _{1} + \triangle _{2} + \triangle _{3})}

AB 2 2 1 + BC 2 2 3 + CA 2 2 2 2 s 2 A \implies \dfrac{\text{AB}^2}{2\triangle _{1}} +\dfrac{\text{BC}^2}{2\triangle _{3}} + \dfrac{\text{CA}^2}{2\triangle _{2}} \ge \dfrac{2s^2}{A}

Hence , a = 2 \boxed{a=2}

Sahil Silare
Mar 30, 2018

Assume the triangle to be equilateral with side x x , then just plug in the values.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...