Triangles

Geometry Level pending

Triangle A B C ABC has a right angle at C C . If sin A = 2 3 \sin A = \frac {2}{3} , then tan B \tan B is

5 2 \frac {\sqrt{5}}{2} 2 5 \frac {2}{\sqrt{5}} 5 2 \frac {5}{2} 2 5 \frac {2}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marta Reece
Mar 22, 2017

An easy way to get s i n ( A ) = 2 3 sin(A)=\frac{2}{3} is to make C B = 2 CB=2 and A B = 3 AB=3 .

From Pythagorean theorem, we get x = 3 4 = 5 x=\sqrt{3-4}=\sqrt{5} .

So the tangent is t a n ( B ) = 5 2 tan(B)=\frac{\sqrt{5}}{2} .

Viki Zeta
Mar 22, 2017

tan 2 x + 1 = sec 2 x 1 cos 2 x = 1 + tan 2 x 1 cos 2 x = 1 + tan 2 x 1 1 sin 2 x = 1 + 1 tan 2 x 1 1 4 9 1 = 1 tan 2 x 1 5 9 1 = 1 tan 2 x 1 tan 2 x = 9 5 1 = 4 5 tan x = 5 2 \tan^2x + 1 = \sec^2x \\ \dfrac{1}{\cos^2x} = 1 + \tan^2x \\ \dfrac{1}{\cos^2x} = 1 + \tan^2x \\ \dfrac{1}{1 - \sin^2x} = 1 + \dfrac{1}{\tan^2x} \\ \dfrac{1}{1 - \dfrac{4}{9}} -1 = \dfrac{1}{\tan^2x} \\ \dfrac{1}{\dfrac{5}{9}} - 1 = \dfrac{1}{\tan^2x} \\ \dfrac{1}{\tan^2x} = \dfrac{9}{5} - 1 = \dfrac{4}{5} \\ \tan x = \dfrac{\sqrt[]{5}}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...