Triangles and Area

Geometry Level pending

In the figure, DE is a parallel line to BC which divides the triangles into two polygons of equal area.

So, find the value of B D A B \dfrac{BD}{AB} .


The answer is 0.293.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 9, 2016

D E B C Δ A D E Δ A B C (AA Similarity) ar(ABC) ar(ADE) = ( A B A D ) 2 ar(ABC) 2 ar(ADE) = ( A B A D ) 2 (Since, ar(ADE) = ar(DECB) = 2ar(ABC)) 1 2 = ( A B A D ) 2 1 2 = A B A D 2 = A D A B 2 = A D A B 1 2 = 1 A D A B 1 2 2 = A B A D A B D B A B = 2 2 2 = 0.293 DE || BC \\ \Delta ADE \sim \Delta ABC \text{ (AA Similarity)} \\ \dfrac{\text{ar(ABC)}}{\text{ar(ADE)}} = (\dfrac{AB}{AD})^2 \\ \dfrac{\text{ar(ABC)}}{2\text{ar(ADE)}} = (\dfrac{AB}{AD})^2 \text{ (Since, ar(ADE) = ar(DECB) = 2ar(ABC))} \\ \dfrac{1}{2} = (\dfrac{AB}{AD})^2 \\ \dfrac{1}{\sqrt[]{2}} = \dfrac{AB}{AD} \\ \sqrt[]{2} = \dfrac{AD}{AB} \\ -\sqrt[]{2} = -\dfrac{AD}{AB} \\ 1 - \sqrt[]{2} = 1 - \dfrac{AD}{AB} \\ 1 - \dfrac{\sqrt[]{2}}{2} = \dfrac{AB - AD}{AB} \\ \dfrac{DB}{AB} = \dfrac{2 - \sqrt[]{2}}{2} = 0.293\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...