Triangles in 3D!

Geometry Level 3

O , X , Y , Z O,X,Y,Z are four points on a 3D Cartesian space, where O O is the origin, X X a point on the x x -axis, Y Y a point on the y y -axis, and Z Z a point on the z z -axis.

Now, the area of O X Y \triangle OXY is given by a a , the area of O Y Z \triangle OYZ by b b , and the area of O X Z \triangle OXZ by c c .

Find the area of X Y Z \triangle XYZ in terms of a , b , c a,b,c .

a + b + c a+b+c 3 3 ( a + b + c ) \frac{\sqrt{3}}{3}(a+b+c) a 2 + b 2 + c 2 a b c a^2+b^2+c^2-a-b-c a b + b c + a c \sqrt{ab+bc+ac} a 2 + b 2 + c 2 \sqrt{a^2+b^2+c^2} a b c 3 \sqrt[3]{abc} a 3 + b 3 + c 3 3 \sqrt[3]{a^3+b^3+c^3} a 2 b 2 + c 2 + b 2 a 2 + c 2 + c 2 a 2 + b 2 \frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nick Turtle
May 3, 2018

This problem may remind you of the Pythagoras' Theorem but in 3D. Instead of the length of two legs, we have the areas of three triangular faces a = O X Y a=\triangle OXY , b = O Y Z b=\triangle OYZ , and c = O X Z c=\triangle OXZ . Instead of finding the length of the hypotenuse, we are trying to find the area of the triangle "hypotenuse" X Y Z \triangle XYZ . Coincidentally, the formula is similar to the 2D Pythagoras' Theorem but with an extra variable: a 2 + b 2 + c 2 \sqrt{a^2+b^2+c^2} .

Let's try to prove it formally. There's a couple of methods that we can use here, but I will try working with vectors. (Another method involves finding the base and subsequently the height of X Y Z \triangle XYZ through repeated use of Pythagoras' Theorem.)

If we are given two sides of a triangle in vector form u , v \vec u, \vec v , we can find its area using the cross product with 1 2 u × v \frac{1}{2}|\vec u \times \vec v| .

Suppose that the vector from O O to X X is x = ( x 0 0 ) \vec x=\begin{pmatrix}x\\0\\0\end{pmatrix} , that from O O to Y Y is y = ( 0 y 0 ) \vec y=\begin{pmatrix}0\\y\\0\end{pmatrix} , and that from O O to Z Z is z = ( 0 0 z ) \vec z=\begin{pmatrix}0\\0\\z\end{pmatrix} .

If you're wondering why we introduced new variables here, realize that the areas of a = O X Y a=\triangle OXY , b = O Y Z b=\triangle OYZ , and c = O X Z c=\triangle OXZ can be easily expressed in terms of x , y , z x,y,z . In fact, a = 1 2 x y a=\frac{1}{2}xy , b = 1 2 y z b=\frac{1}{2}yz , and c = 1 2 x z c=\frac{1}{2}xz , respectively, which we will use later.

Now, we try to find two sides of X Y Z \triangle XYZ . In this example, I'm going to use X Y XY and X Z XZ .

Using vector algebra, we have X Y = y x = ( 0 x y 0 0 0 ) = ( x y 0 ) \vec {XY}=\vec y-\vec x=\begin{pmatrix}0-x\\y-0\\0-0\end{pmatrix}=\begin{pmatrix}-x\\y\\0\end{pmatrix} and X Z = z x = ( 0 x 0 0 z 0 ) = ( x 0 z ) \vec {XZ}=\vec z-\vec x=\begin{pmatrix}0-x\\0-0\\z-0\end{pmatrix}=\begin{pmatrix}-x\\0\\z\end{pmatrix} .

With this, we can finally find the area:

1 2 X Y × X Z \frac{1}{2}|\vec {XY} \times \vec {XZ}| = 1 2 ( x y 0 ) × ( x 0 z ) =\frac{1}{2}\left|\begin{pmatrix}-x\\y\\0\end{pmatrix} \times \begin{pmatrix}-x\\0\\z\end{pmatrix}\right|

Computing the cross product, we have = 1 2 ( y z x z x y ) =\frac{1}{2}\left|\begin{pmatrix}yz\\xz\\-xy\end{pmatrix}\right| = 1 2 ( y z ) 2 + ( x z ) 2 + ( x y ) 2 =\frac{1}{2}\sqrt{(yz)^2+(xz)^2+(-xy)^2}

Now, bring in the 1 2 \frac{1}{2} from the outside: = ( 1 2 y z ) 2 + ( 1 2 x z ) 2 + ( 1 2 x y ) 2 =\sqrt{\left(\frac{1}{2}yz\right)^2+\left(\frac{1}{2}xz\right)^2+\left(\frac{1}{2}xy\right)^2}

Remember how we said that a = 1 2 x y a=\frac{1}{2}xy , b = 1 2 y z b=\frac{1}{2}yz , and c = 1 2 x z c=\frac{1}{2}xz ? Substitute these in to get the final result:

a 2 + b 2 + c 2 \sqrt{a^2+b^2+c^2}

That's tough

Aarush Priyankaj - 2 years, 9 months ago

Log in to reply

But it work

xxf xxf - 6 months, 1 week ago
Simon Ouyang
May 4, 2018

A Traditional Way

Approach

For this question, we could start by find some calculation techniques for triangle's area.

And substitute the area of three triangle a a , b b , and c c in.

Triangle's area

Here, I choose Heron's formula.

Wikipedia

Which is

a r e a = s ( s A ) ( s B ) ( s C ) area=\sqrt{s\left(s-A\right)\left(s-B\right)\left(s-C\right)}

s = ( A + B + C ) 2 s=\frac{\left(A+B+C\right)}{2}

Where A A , B B , and C C is three side of the triangle.

Find side of the triangle A A , B B , and C C

By Pythagoras Theorem, we could find three side of the triangle as:

A = x 2 + y 2 A=\sqrt{x^2+y^2}

B = y 2 + z 2 B=\sqrt{y^2+z^2}

C = z 2 + x 2 C=\sqrt{z^2+x^2}

Find side A A , B B , and C C in term's of area a a , b b , and c c

As we could see, area a a , b b , and c c could be express as

a = x y 2 a=\frac{x\cdot y}{2}

b = y z 2 b=\frac{y\cdot z}{2}

c = x z 2 c=\frac{x\cdot z}{2}

Since we would like to take x x , y y , and z z out from the function.

We could see that:

( x y ) ( x z ) ( y z ) = x 2 \frac{\left(x\cdot y\right)\left(x\cdot z\right)}{\left(y\cdot z\right)}=x^2

So if we apply this to a, b, and c, we could pull x 2 x^2 , y 2 y^2 , and z 2 z^2 out.

2 a c b = 2 ( x y 2 ) ( x z 2 ) ( y z 2 ) = x 2 2\frac{a\cdot c}{\ b}=2\frac{\left(\frac{x\cdot y}{2}\right)\left(\frac{x\cdot z}{2}\right)}{\left(\frac{y\cdot z}{2}\right)}=x^2

2 a b c = 2 ( x y 2 ) ( y z 2 ) ( x z 2 ) = y 2 2\frac{a\cdot b}{c}=2\frac{\left(\frac{x\cdot y}{2}\right)\left(\frac{y\cdot z}{2}\right)}{\left(\frac{x\cdot z}{2}\right)}=y^2

2 c b a = 2 ( x z 2 ) ( y z 2 ) ( x y 2 ) = z 2 2\frac{c\cdot b}{a}=2\frac{\left(\frac{x\cdot z}{2}\right)\left(\frac{y\cdot z}{2}\right)}{\left(\frac{x\cdot y}{2}\right)}=z^2

So we could substitute x 2 x^2 , y 2 y^2 , and z 2 z^2 with a a , b b , and c c in side length A A , B B , and C C .

A = a c b 2 + a b c 2 A=\sqrt{\frac{a\cdot c}{b}\cdot2+\frac{a\cdot b}{c}\cdot2}

B = a b c 2 + b c a 2 B=\sqrt{\frac{a\cdot b}{c}\cdot2+\frac{b\cdot c}{a}\cdot2}

C = b c a 2 + a c b 2 C=\sqrt{\frac{b\cdot c}{a}\cdot2+\frac{a\cdot c}{b}\cdot2}

Use Heron's formula

Let's simplify Heron's formula by substitute s as A A , B B , and C C .

a r e a = s ( s A ) ( s B ) ( s C ) area=\sqrt{s\left(s-A\right)\left(s-B\right)\left(s-C\right)}

Where

s = ( A + B + C ) 2 s=\frac{\left(A+B+C\right)}{2}

So

a r e a = ( ( A + B + C ) 2 ) ( ( A + B + C ) 2 A ) ( ( A + B + C ) 2 B ) ( ( A + B + C ) 2 C ) area=\sqrt{\left(\frac{\left(A+B+C\right)}{2}\right)\left(\frac{\left(A+B+C\right)}{2}-A\right)\left(\frac{\left(A+B+C\right)}{2}-B\right)\left(\frac{\left(A+B+C\right)}{2}-C\right)}

a r e a = ( ( A + B + C ) 2 ) ( ( A + B + C ) 2 ) ( ( A B + C ) 2 ) ( ( A + B C ) 2 ) area=\sqrt{\left(\frac{\left(A+B+C\right)}{2}\right)\left(\frac{\left(-A+B+C\right)}{2}\right)\left(\frac{\left(A-B+C\right)}{2}\right)\left(\frac{\left(A+B-C\right)}{2}\right)}

a r e a = ( ( A + B + C ) ( A + B + C ) ( A B + C ) ( A + B C ) 16 ) area=\sqrt{\left(\frac{\left(A+B+C\right)\left(-A+B+C\right)\left(A-B+C\right)\left(A+B-C\right)}{16}\right)}

a r e a = ( A 4 + 2 A 2 B 2 + 2 A 2 C 2 B 4 + 2 B 2 C 2 C 4 16 ) area=\sqrt{\left(\frac{-A^4+2A^2B^2+2A^2C^2-B^4+2B^2C^2-C^4}{16}\right)}

Then we could substitute A A , B B , and C C as a a , b b , and c c .

( ( a b c 2 + a c b 2 ) 2 + 2 ( a b c 2 + a c b 2 ) ( a b c 2 + b c a 2 ) ( a b c 2 + b c a 2 ) 2 + 2 ( a b c 2 + a c b 2 ) ( b c a 2 + a c b 2 ) + 2 ( a b c 2 + b c a 2 ) ( b c a 2 + a c b 2 ) ( b c a 2 + a c b 2 ) 2 16 ) \sqrt{\left(\frac{-\left(\frac{a\cdot b}{c}\cdot2+\frac{a\cdot c}{b}\cdot2\right)^2+2\left(\frac{a\cdot b}{c}\cdot2+\frac{a\cdot c}{b}\cdot2\right)\left(\frac{a\cdot b}{c}\cdot2+\frac{b\cdot c}{a}\cdot2\right)-\left(\frac{a\cdot b}{c}\cdot2+\frac{b\cdot c}{a}\cdot2\right)^2+2\left(\frac{a\cdot b}{c}\cdot2+\frac{a\cdot c}{b}\cdot2\right)\left(\frac{b\cdot c}{a}\cdot2+\frac{a\cdot c}{b}\cdot2\right)+2\left(\frac{a\cdot b}{c}\cdot2+\frac{b\cdot c}{a}\cdot2\right)\left(\frac{b\cdot c}{a}\cdot2+\frac{a\cdot c}{b}\cdot2\right)-\left(\frac{b\cdot c}{a}\cdot2+\frac{a\cdot c}{b}\cdot2\right)^2}{16}\right)}

And we simplify:

1 4 a b c 2 a c b 2 + 1 4 b c a 2 a c b 2 + 1 4 a b c 2 b c a 2 \sqrt{\frac{1}{4}\frac{a\cdot b}{c}\cdot2\frac{a\cdot c}{b}\cdot2+\frac{1}{4}\frac{b\cdot c}{a}\cdot2\frac{a\cdot c}{b}\cdot2+\frac{1}{4}\frac{a\cdot b}{c}\cdot2\frac{b\cdot c}{a}\cdot2}

a c b b c a + a b c ( a c b + b c a ) \sqrt{\frac{a\cdot c}{b}\cdot\frac{b\cdot c}{a}+\frac{a\cdot b}{c}\left(\frac{a\cdot c}{b}+\frac{b\cdot c}{a}\right)}

a 2 + b 2 + c 2 \sqrt{a^2+b^2+c^2}

Boom we got the answer!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...