Triangles on a Hexagon

Geometry Level 2

(To Scale)

The diagram above shows a regular hexagon A B C D E F ABCDEF . Triangles E F G EFG and C D I CDI are 30-60-90 triangles. Triangles D E H DEH and B C J BCJ are right isosceles triangles. The triangles B G H BGH and F I J FIJ intersect to form quadrilateral K L M N KLMN . Find the ratio of the area of A B C D E F ABCDEF to the area of K L M N KLMN . Express your answer to the nearest thousandth.


The answer is 9.373.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Apr 10, 2018

Let A A be at ( 0 , 0 ) (0,0) and let B B be at ( 1 , 0 ) (1,0) on the cartesian plane. The cordinates of point F F can be found by drawing perpendicular lines at points F F and A A to form a 30-60-90 triangle as shown. Since the hypotenuse is of length 1, the shorter leg has length 1 2 \frac{1}{2} and the longer leg has length 1 2 3 \frac{1}{2}\cdot\sqrt{3} or 3 2 \frac{\sqrt{3}}{2} . This gives us the coordinates of F F which are ( 1 2 , 3 2 ) (-\frac{1}{2},\frac{\sqrt{3}}{2}) . The coordinates of F F , G G , H H , I I , J J , and B B can all be found using various methods using properties of 30-60-90 and 45-45-90 triangles and circles.

The final coordinates (you'll have to take my word for it, or do it yourself) end up being the following.

B B : ( 1 , 0 ) \left(1,0\right)

F F : ( 1 2 , 3 2 ) \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)

G G : ( 1 2 , 3 ) \left(-\frac{1}{2},\sqrt{3}\right)

H H : ( 1 2 , 3 + 1 2 ) \left(\frac{1}{2},\sqrt{3}+\frac{1}{2}\right)

I I : ( 7 4 , 3 3 4 ) \left(\frac{7}{4},\frac{3\sqrt{3}}{4}\right)

J J : ( ( 5 + 3 ) 4 , ( 1 + 3 ) 4 ) \left(\frac{\left(5+\sqrt{3}\right)}{4},\frac{\left(-1+\sqrt{3}\right)}{4}\right)

Using point-slope form gives us the equations for the lines H B \overline { HB } , G B \overline { GB } , I F \overline { IF } , and J F \overline { JF } .

H B \overline { HB } : y = ( 3 + 1 2 ) 1 2 ( x 1 ) y=-\frac{\left(\sqrt{3}+\frac{1}{2}\right)}{\frac{1}{2}}\left(x-1\right)

G B \overline { GB } : y = 3 3 2 ( x 1 ) y=\frac{\sqrt{3}}{-\frac{3}{2}}\left(x-1\right)

I F \overline { IF } : y 3 2 = 3 4 9 4 ( x + 1 2 ) y-\frac{\sqrt{3}}{2}=\frac{\frac{\sqrt{3}}{4}}{\frac{9}{4}}\left(x+\frac{1}{2}\right)

J F \overline { JF } : y 3 2 = ( 1 + 3 ) 4 3 2 ( 5 + 3 ) 4 + 1 2 ( x + 1 2 ) y-\frac{\sqrt{3}}{2}=\frac{\frac{\left(-1+\sqrt{3}\right)}{4}-\frac{\sqrt{3}}{2}}{\frac{\left(5+\sqrt{3}\right)}{4}+\frac{1}{2}}\left(x+\frac{1}{2}\right)

We can solve these equations to find the points K K , L L , M M , N N .

K K : ( 1 7 , 4 3 7 ) \left(\frac{1}{7},\frac{4\sqrt{3}}{7}\right)

L L : ( 9 3 + 110 167 , 3 167 ( 1 + 35 3 ) ) \left(\frac{9\sqrt{3}+110}{167},\frac{3}{167}\left(1+35\sqrt{3}\right)\right)

M M : ( 2 ( 15 + 3 ) 37 , 1 37 ( 12 3 5 ) ) \left(\frac{2\left(15+\sqrt{3}\right)}{37},\frac{1}{37}\left(12\sqrt{3}-5\right)\right)

N N : ( 3 3 + 26 59 , 2 59 ( 11 3 3 ) ) \left(\frac{3\sqrt{3}+26}{59},\frac{2}{59}\left(11\sqrt{3}-3\right)\right)

The shoelace theorem is a useful theorem, which gives us the following. K L M N = 1 7 3 167 ( 1 + 35 3 ) + 9 3 + 110 167 1 37 ( 12 3 5 ) + 2 ( 15 + 3 ) 37 2 59 ( 11 3 3 ) + 3 3 + 26 59 4 3 7 ( 4 3 7 9 3 + 110 167 + 3 167 ( 1 + 35 3 ) 2 ( 15 + 3 ) 37 + 1 37 ( 12 3 5 ) 3 3 + 26 59 + 2 59 ( 11 3 3 ) 1 7 ) 2 KLMN = \frac{|\frac{1}{7}\cdot \frac{3}{167}\left(1+35\sqrt{3}\right)+\frac{9\sqrt{3}+110}{167}\cdot \frac{1}{37}\left(12\sqrt{3}-5\right)+\frac{2\left(15+\sqrt{3}\right)}{37}\cdot \frac{2}{59}\left(11\sqrt{3}-3\right)+\frac{3\sqrt{3}+26}{59}\cdot \frac{4\sqrt{3}}{7}-(\frac{4\sqrt{3}}{7}\cdot \frac{9\sqrt{3}+110}{167}+\frac{3}{167}\left(1+35\sqrt{3}\right)\cdot \frac{2\left(15+\sqrt{3}\right)}{37}+\frac{1}{37}\left(12\sqrt{3}-5\right)\cdot \frac{3\sqrt{3}+26}{59}+\frac{2}{59}\left(11\sqrt{3}-3\right)\cdot \frac{1}{7})|}{2}

This simplifies to K L M N = 390789 + 591161 3 2551927 KLMN=\frac{390789+591161\sqrt{3}}{2551927} .

The area of hexagon A B C D E F ABCDEF is equivalent to 6 times the area of an equilateral triangle with side length 1. A B C D E F = 6 3 4 ABCDEF=6\cdot\frac{\sqrt{3}}{4}

The ratio of the areas of A B C D E F ABCDEF to K L M N KLMN is 6 3 4 390789 + 591161 3 2551927 \frac{6\cdot\frac{\sqrt{3}}{4}}{\frac{390789+591161\sqrt{3}}{2551927}} or about 9.373088985.

Rounding to the nearest thousandth gives us 9.373 \boxed{9.373} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...