Triangles,Line Up!

A triangle with integer side lengths has a perimeter 2018. How many possible triangles are there?

Clarification: The area of the triangles must be a positive value.

Bonus: In these triangles,how many has an integer area?


The answer is 84840.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jun 26, 2018

{ ( a , b , c ) N 3 : a b c and there is a triangle with side lengths a , b , c and perimeter 2018 } = { ( a , b , c ) N 3 : a b c < a + b and a + b + c = 2018 } = { ( a , b , c ) N 3 : 2018 b c b c < a + b + c 2 and a + b + c = 2018 } = { ( b , c ) N 2 : 1009 c 2 b c < 1009 } = { ( b , c ) N 2 : 1009 c 2 b c and 673 c 1008 } = c = 673 1008 { b N : 1009 c 2 b c } = c = 673 1008 c ( 1009 c 2 ) + 1 = c = 673 1008 3 2 c + 1 4 ( ( 1 ) c 1 ) 1008 = c = 673 1008 6 c 4033 4 + c = 673 1008 1 4 ( 1 ) c = 1 2 ( 6 ( 673 ) 4033 4 + 6 ( 1008 ) 4033 4 ) ( 1008 673 + 1 ) + 0 = 84840 \begin{aligned} &\left|\{(a,b,c) \in \mathbb{N}^3 : a\leq b\leq c \text{ and there is a triangle with side lengths } a,b,c \text{ and perimeter } 2018\}\right| \\ &= \left|\{(a,b,c) \in \mathbb{N}^3 : a\leq b\leq c < a+b \text{ and } a+b+c=2018\}\right| \\ &= \left|\{(a,b,c) \in \mathbb{N}^3 : 2018-b-c \leq b \leq c < \frac{a+b+c}{2} \text{ and } a+b+c = 2018\}\right| \\ &= \left|\{(b,c) \in \mathbb{N}^2 : 1009-\frac{c}{2} \leq b \leq c < 1009\}\right| \\ &= \left|\{(b,c) \in \mathbb{N}^2 : 1009-\lfloor\frac{c}{2}\rfloor\leq b\leq c \text{ and } 673\leq c\leq 1008\}\right| \\ &= \sum_{c=673}^{1008} \left|\{b \in \mathbb{N} : 1009-\lfloor\frac{c}{2}\rfloor \leq b \leq c\}\right| \\ &= \sum_{c=673}^{1008} c - \left(1009-\lfloor\frac{c}{2}\rfloor\right) + 1 \\ &= \sum_{c=673}^{1008} \frac{3}{2}c + \frac{1}{4}((-1)^c - 1) - 1008 \\ &= \sum_{c=673}^{1008} \frac{6c - 4033}{4} + \sum_{c=673}^{1008}\frac{1}{4}(-1)^c \\ &= \frac{1}{2}\left(\frac{6(673)-4033}{4} + \frac{6(1008)-4033}{4}\right)(1008-673+1) + 0 \\ &= \boxed{84840} \end{aligned}


For the bonus question: Let p p be a prime number and consider the triangle with integral sidelengths a , b , c a,b,c and perimeter 2 p 2p . Then by Heron's formula, the area A A of this triangle satisfies A 2 = p ( p a ) ( p b ) ( p c ) . A^2 = p(p-a)(p-b)(p-c). Suppose that A A is an integer. Then since p p divides A 2 A^2 and p p is a prime, it follows that p 2 p^2 divides A 2 A^2 and therefore p p divides A 2 / p = ( p a ) ( p b ) ( p c ) A^2 / p = (p-a)(p-b)(p-c) As once again p p is a prime, p p must divide at least one of p a , p b , p c p-a, p-b, p-c . However, since all of these are positive integers less than p p , none of them is divisible by p p . This is a contradiction, so it follows that A A cannot be an integer.

We have proven: If a triangle has integral sidelengths and prime semiperimeter, then its area is not an integer. \text{If a triangle has integral sidelengths and prime semiperimeter, then its area is not an integer.}

In our case, the semiperimeter is 1009 1009 , a prime number, so there are zero \boxed{\text{zero}} such triangles with integral area.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...