Triangular Area

Geometry Level 3

In the diagram above A B C \triangle{ABC} is an isosceles triangle with A B = B C = A C 1 |\overline {\rm AB}| =|\overline {\rm BC}| = |\overline {\rm AC}| - 1 . If the radius of the inscribed circle is 3 2 \dfrac{3}{2} , find the area of A B C \triangle{ABC} .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Nov 26, 2019

I decided to use an area approach here.

The height h h of isosceles A B C \triangle{ABC} is h = ( x 1 ) 2 ( x 2 ) 2 = h = \sqrt{(x - 1)^2 - (\dfrac{x}{2})^2} = 3 x 2 8 x + 4 2 \dfrac{\sqrt{3x^2 - 8x + 4}}{2}

\implies The area A A B C = 1 2 x h = 3 x 2 8 x + 4 x 4 A_{\triangle{ABC}} = \dfrac{1}{2} x h = \dfrac{\sqrt{3x^2 - 8x + 4} * x}{4}

and A A B C A_{\triangle{ABC}} can also be expressed as A A B C = A A P C + A A P B + A B P C A_{\triangle{ABC}} = A_{\triangle{APC}} + A_{\triangle{APB}} + A_{\triangle{BPC}}

= 3 ( 3 x 2 ) 4 = \dfrac{3(3x - 2)}{4}

3 ( 3 x 2 ) = 3 x 2 8 x + 4 x 9 ( 3 x 2 ) 2 = ( x 2 ) ( 3 x 2 ) ( x 2 ) \implies 3(3x - 2) = \sqrt{3x^2 - 8x + 4} * x \implies 9(3x - 2)^2 = (x - 2)(3x - 2)(x^2) ( 2 3 x ) ( x 3 2 x 2 27 x + 18 ) = 0 ( 2 3 x ) ( x 6 ) ( x 2 + 4 x 3 ) = 0 \implies (2 - 3x)(x^3 - 2x^2 - 27x + 18) = 0 \implies (2 - 3x)(x - 6)(x^2 + 4x - 3) = 0

( x 2 + 4 x 3 ) = 0 x = 7 2 (x^2 + 4x - 3) = 0 \implies x = \sqrt{7} - 2 (dropping the negative root) and

x = 7 2 A B = 7 3 < 0 x = 7 2 x = \sqrt{7} - 2 \implies |\overline {\rm AB}| = \sqrt{7} - 3 < 0 \therefore x = \sqrt{7} - 2 is not a valid solution to the problem.

x = 2 3 A B < 0 x = 2 3 x = \dfrac{2}{3} \implies |\overline {\rm AB}| < 0 \therefore x = \dfrac{2}{3} is not a valid solution to the problem.

Using x = 6 A C = 6 , A B = B C = 5 x =6 \implies |\overline {\rm AC}| = 6, |\overline {\rm AB}| = |\overline {\rm BC}| = 5 and height h = 4 h = 4 \implies

A A B C = 12 A_{\triangle{ABC}} = \boxed{12} .

Chew-Seong Cheong
Dec 25, 2019

Let the base length of the isosceles triangle be a a , then the leg length is a 1 a-1 . Then its height of triangle h = ( a 1 ) 2 ( a 2 ) 2 = ( 3 a 2 ) ( a 2 ) 2 h = \sqrt{ (a-1)^2 - \left(\dfrac a2\right)^2} = \dfrac {\sqrt{(3a-2)(a-2)}}2 and its area A = a ( 3 a 2 ) ( a 2 ) 4 A= \dfrac {a\sqrt{(3a-2)(a-2)}}4 . Since the incircle of the triangle has a radius of 3 2 \dfrac 32 , the area is also given by A = 3 ( 3 a 2 ) 4 A=\dfrac {3(3a-2)}4 . Therefore,

a ( 3 a 2 ) ( a 2 ) 4 = 3 ( 3 a 2 ) 4 a a 2 = 3 3 a 2 Squaring both sides a 3 2 a 2 = 27 a 18 a 3 2 a 2 27 a + 18 = 0 ( a 6 ) ( a 2 + 4 a 3 ) = 0 \begin{aligned} \frac {a\sqrt{(3a-2)(a-2)}}4 & = \frac {3(3a-2)}4 \\ a\sqrt{a-2} & = 3\sqrt{3a-2} & \small \blue{\text{Squaring both sides}} \\ a^3 - 2a^2 & = 27a - 18 \\ a^3 - 2a^2 - 27a + 18 & = 0 \\ (a-6)(a^2 + 4a-3) & = 0 \end{aligned}

a = { 6 A = 3 ( 3 ( 6 ) 2 ) 4 = 12 7 2 A < 0 Unacceptable 7 2 A < 0 Unacceptable \implies a = \begin{cases} 6 & \implies A = \dfrac {3(3(6)-2)}4 = \boxed{12} \\ \sqrt 7 - 2 & \implies A < 0 \small \red{\text{ Unacceptable}} \\ - \sqrt 7 - 2 & \implies A < 0 \small \red{\text{ Unacceptable}} \end{cases}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...