Triangular number theory

How many natural numbers n n exist , such that n n and 4 n 4n both are triangular numbers?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Verma
Feb 18, 2015

W e o b s e r v e t h a t t r i a n g u l a r n u m b e r s h a v e t h e i r c o m m o n d i f f e r e n c e s i n A . P . T h u s , w e c a n s a y : a n 2 + b n + c = a n P u t t i n g n = 1 , 2 , 3 a n d l o o k i n g a t a n s v a l u e s , w e h a v e : a + b + c = 1 4 a + 2 b + c = 3 9 a + 3 b + c = 6 S o l v i n g t h e t h r e e e q u a t i o n s , w e h a v e : a = 1 2 , b = 1 2 , c = 0 H e n c e , w e h a v e o u r t r i a n g u l a r n u m b e r i n t h e f o r m : n ( 1 + n ) 2 = a n N o w c l e a r l y f o r a n y i n t e g r a l n u m b e r , a n a n d 4 a n w o u l d n t e x i s t a s t r i a n g u l a r n u m b e r s a s t h i s w o u l d t u r n o u r n f r a c t i o n a l . H e n c e , n = 0. We\quad observe\quad that\quad triangular\quad numbers\quad have\quad their\quad \\ common\quad differences\quad in\quad A.P.\\ \\ Thus,\quad we\quad can\quad say:-\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad a{ n }^{ 2 }\quad +\quad bn\quad +\quad c\quad =\quad { a }_{ n }\\ \\ Putting\quad n\quad =\quad 1,2,3\quad and\quad looking\quad at\quad { a }_{ n }'s\quad values,\quad we\quad have:-\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad a\quad +\quad b\quad +\quad c\quad =\quad 1\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad 4a\quad +\quad 2b\quad +\quad c\quad =\quad 3\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad 9a\quad +\quad 3b\quad +\quad c\quad =\quad 6\\ \\ Solving\quad the\quad three\quad equations,\quad we\quad have:-\\ \quad a\quad =\quad \frac { 1 }{ 2 } \quad ,\quad b\quad =\quad \frac { 1 }{ 2 } \quad ,\quad \quad c\quad =\quad 0\\ \\ \quad \quad Hence,\quad we\quad have\quad our\quad triangular\quad number\quad in\quad the\quad form:-\\ \quad \quad \quad \quad \quad \cfrac { n\quad (1\quad +\quad n) }{ 2 } \quad =\quad { a }_{ n }\\ \\ Now\quad clearly\quad for\quad any\quad integral\quad number,\quad { a }_{ n }\quad and\quad 4{ a }_{ n }\quad \\ wouldn't\quad exist\quad as\quad triangular\quad \\ numbers\quad as\quad this\quad would\quad turn\quad our\quad n\quad fractional.\\ \\ Hence,\quad n\quad =\quad 0.\\ \quad \quad \quad \quad \quad \quad \quad \quad \\ \\

Would 0 count as a natural number?

Feathery Studio - 6 years, 1 month ago

Log in to reply

The set of natural numbers includes all integers from 1 1 to infinity. Hence, no 0 0 is not a natural number. However, you may call it a whole number or an integer.

Kunal Verma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...