Tribonacci Treat

lim n F n + 1 F n = A + B C lim n T n + 1 T n = 1 D ( E + F G H 3 + I + J K 3 ) \begin{aligned} \displaystyle \lim_{n \to \infty} \frac {F_{n+1}}{F_n} & = & \frac {A + \sqrt B }{C} \\ \displaystyle \lim_{n \to \infty} \frac {T_{n+1}}{T_n} & = & \frac {1}{D} \left ( E + \sqrt[3]{F- G \sqrt H} + \sqrt[3]{I + J \sqrt K } \right) \\ \end{aligned}

Let the n th n^\text{th} term of a Fibonacci sequence and Tribonacci sequence be denoted as F n F_n and T n T_n respectively.

In its simplest form, we have positive integers A , B , C , D , E , F , G , H , I , J , K A,B,C,D,E,F,G,H,I,J,K such that the limits above are satisfied.

Evaluate A + B + C + D + E + F + G + H + I + J + K A+B+C+D+E+F+G+H+I+J+K .


The answer is 122.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 31, 2015

Let x = lim n F n + 1 F n = lim n F n + F n 1 F n = 1 + 1 x x 2 x 1 = 0 x = A + B C = 1 + 5 2 \space x = \displaystyle \lim_{n\rightarrow \infty} {\dfrac {F_{n+1}}{F_n} } = \lim_{n\rightarrow \infty} {\dfrac {F_n+F_{n-1}} {F_n} } = 1+\dfrac{1}{x} \\ \Rightarrow x^2 -x -1 = 0\quad \Rightarrow x = \dfrac {A+\sqrt{B}}{C} = \dfrac {1+\sqrt{5}}{2}

Let y = lim n T n + 1 T n = lim n T n + T n 1 + T n 2 T n = lim n ( 1 + T n 1 T n + T n 2 T n 1 T n 1 T n ) = 1 + 1 y + 1 y 2 y 3 y 2 y 1 = 0 . . . ( 1 ) \space y = \displaystyle \lim_{n\rightarrow \infty} {\dfrac {T_{n+1}}{T_n} } = \lim_{n\rightarrow \infty} {\dfrac {T_n+T_{n-1}+T_{n-2}} {T_n} } \\ \quad = \displaystyle \lim_{n\rightarrow \infty} {\left( 1 + \dfrac {T_{n-1}} {T_n} + \dfrac {T_{n-2}T_{n-1}} {T_{n-1} T_n} \right)} = 1+\dfrac{1}{y} + \dfrac{1}{y^2} \\ \Rightarrow y^3-y^2-y-1=0 \quad ...(1)

Solve the cubic equation Eq.1 by Cardano's Formula as follows:

Substituting x = t + 1 3 \space x=t+\frac {1}{3} \space \Rightarrow Eq.1: t 3 4 3 t 38 27 = 0 . . . ( 2 ) \quad t^3 - \frac {4}{3} t - \frac {38}{27} = 0\quad...(2)

Let t = u + v \space t = u + v \space \Rightarrow Eq.2: u 3 + v 3 + ( 3 u v 4 3 ) ( u + v ) 38 27 = 0 . . . ( 3 ) \space u^3+v^3+(3uv-\frac{4}{3})(u+v)-\frac {38}{27} = 0\quad...(3)

Now let 3 u v 4 3 = 0 \space 3uv-\frac{4}{3} = 0\space \Rightarrow Eq. 3: u 3 + v 3 = 38 27 \space u^3+v^3 = \frac {38}{27} \space also u 3 v 3 = 64 729 \space u^3v^3 = \frac {64}{729}

Therefore, u 3 \space u^3 \space and v 3 \space v^3 \space are roots of z 2 38 27 z + 64 729 = 0 . . . ( 4 ) \space z^2 - \frac {38}{27}z + \frac {64}{729} = 0 \quad ...(4)

u 3 , v 3 = 19 27 ± 1 9 2 2 7 2 64 729 = 19 27 ± 33 9 = 1 27 ( 19 ± 3 33 ) x = t + 1 3 = 1 3 + u + v = 1 3 ( 1 + 19 3 33 3 + 19 + 3 33 3 ) \Rightarrow u^3, v^3 = \frac {19}{27} \pm \sqrt{\frac {19^2}{27^2} - \frac{64}{729}} = \frac {19}{27} \pm \frac {\sqrt{33}}{9} = \frac {1}{27} (19 \pm 3\sqrt{33} ) \\ \Rightarrow x = t + \frac {1}{3} = \frac {1}{3} + u + v = \frac {1}{3} ( 1 + \sqrt [3] {19 - 3\sqrt{33}} + \sqrt [3] {19 + 3\sqrt{33}} )

A + B + C + D + E + F + G + H + I + J = 1 + 5 + 2 + 3 + 1 + 19 + 3 + 33 + 19 + 3 + 33 = 122 \Rightarrow A+B+C+D+E+F+G+H+I+J \\ \quad = 1+5+2+3+1+19+3+33+19+3+33 = \boxed {122}

Moderator note:

Fantastic! Is is possible to find the exact form of ratios for all Fibonacci n n -step number sequence?

But that would mean to solve 7-degree equations like x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 0 x^7-x^6-x^5-x^4-x^3-x^2-x-1=0 .

Kenny Lau - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...