n → ∞ lim F n F n + 1 n → ∞ lim T n T n + 1 = = C A + B D 1 ( E + 3 F − G H + 3 I + J K )
Let the n th term of a Fibonacci sequence and Tribonacci sequence be denoted as F n and T n respectively.
In its simplest form, we have positive integers A , B , C , D , E , F , G , H , I , J , K such that the limits above are satisfied.
Evaluate A + B + C + D + E + F + G + H + I + J + K .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Fantastic! Is is possible to find the exact form of ratios for all Fibonacci n -step number sequence?
But that would mean to solve 7-degree equations like x 7 − x 6 − x 5 − x 4 − x 3 − x 2 − x − 1 = 0 .
Problem Loading...
Note Loading...
Set Loading...
Let x = n → ∞ lim F n F n + 1 = n → ∞ lim F n F n + F n − 1 = 1 + x 1 ⇒ x 2 − x − 1 = 0 ⇒ x = C A + B = 2 1 + 5
Let y = n → ∞ lim T n T n + 1 = n → ∞ lim T n T n + T n − 1 + T n − 2 = n → ∞ lim ( 1 + T n T n − 1 + T n − 1 T n T n − 2 T n − 1 ) = 1 + y 1 + y 2 1 ⇒ y 3 − y 2 − y − 1 = 0 . . . ( 1 )
Solve the cubic equation Eq.1 by Cardano's Formula as follows:
Substituting x = t + 3 1 ⇒ Eq.1: t 3 − 3 4 t − 2 7 3 8 = 0 . . . ( 2 )
Let t = u + v ⇒ Eq.2: u 3 + v 3 + ( 3 u v − 3 4 ) ( u + v ) − 2 7 3 8 = 0 . . . ( 3 )
Now let 3 u v − 3 4 = 0 ⇒ Eq. 3: u 3 + v 3 = 2 7 3 8 also u 3 v 3 = 7 2 9 6 4
Therefore, u 3 and v 3 are roots of z 2 − 2 7 3 8 z + 7 2 9 6 4 = 0 . . . ( 4 )
⇒ u 3 , v 3 = 2 7 1 9 ± 2 7 2 1 9 2 − 7 2 9 6 4 = 2 7 1 9 ± 9 3 3 = 2 7 1 ( 1 9 ± 3 3 3 ) ⇒ x = t + 3 1 = 3 1 + u + v = 3 1 ( 1 + 3 1 9 − 3 3 3 + 3 1 9 + 3 3 3 )
⇒ A + B + C + D + E + F + G + H + I + J = 1 + 5 + 2 + 3 + 1 + 1 9 + 3 + 3 3 + 1 9 + 3 + 3 3 = 1 2 2