Tricircle

Geometry Level 4

Points F F and E E are chosen on the unit square A B C D ABCD such that the three incircles are congruent. Find a closed-form expression of their radius, r r , and submit 1 0 6 r \lfloor{10^6r}\rfloor .


The answer is 168807.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the center of the bottom circle and the top-right circles be O O and P P respectively, O N ON be perpendicular to A B AB and P M PM be perpendicular to E F EF . Due to symmetry, A D F \triangle ADF and A B E \triangle ABE are congruent, and C E F \triangle CEF is an isosceles right triangle.

Let E A B = θ \angle EAB = \theta . Note that A O AO bisects E A B \angle EAB . Using half-angle tangent substitution , we have:

A N + N B = A B r cot θ 2 + r = 1 Let t = tan θ 2 r t + r = 1 1 + t t r = 1 . . . ( 1 ) \begin{aligned} AN+NB & = AB \\ r \cot \frac \theta 2 + r & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac rt + r & = 1 \\ \frac {1+t}t \cdot r & = 1 & ...(1) \end{aligned}

Also note that:

2 C M = C E 2 ( 1 + 2 ) r = 1 tan θ = 1 2 t 1 t 2 ( 2 + 2 ) r = 1 2 t t 2 1 t 2 . . . ( 2 ) \begin{aligned} \sqrt 2 \cdot CM & = CE \\ \sqrt 2 (1 + \sqrt 2) r & = 1 - \tan \theta = 1 - \frac {2t}{1-t^2} \\ (2+\sqrt 2)r & = \frac {1-2t-t^2}{1-t^2} & ...(2) \end{aligned}

From ( 1 ) ( 2 ) \dfrac {(1)}{(2)} :

1 + t ( 2 + 2 ) t = 1 t 2 1 2 t t 2 1 ( 2 + 2 ) t = 1 t 1 2 t t 2 ( 1 + 2 ) t 2 ( 4 + 2 ) t + 1 = 0 t = 4 + 2 14 + 4 2 2 + 2 2 For θ < 9 0 \begin{aligned} \frac {1+t}{(2+\sqrt 2)t} & = \frac {1-t^2}{1-2t-t^2} \\ \frac 1{(2+\sqrt 2)t} & = \frac {1-t}{1-2t-t^2} \\ (1+\sqrt 2)t^2 - (4+\sqrt 2)t + 1 & = 0 \\ \implies t & = \frac {4+\sqrt 2-\sqrt{14+4\sqrt 2}}{2+2\sqrt 2} & \small \blue{\text{For }\theta < 90^\circ} \end{aligned}

Therefore r = t 1 + t = 4 + 2 14 + 4 2 6 + 3 2 14 + 4 2 0.168807445128 r = \dfrac t{1+t} = \dfrac {4+\sqrt 2-\sqrt{14+4\sqrt 2}}{6+3\sqrt 2-\sqrt{14+4\sqrt 2}} \approx 0.168807445128 , 1 0 6 r = 168807 \implies \lfloor 10^6r \rfloor = \boxed{168807} .

0.168794362002

Niranjan Khanderia - 1 week, 4 days ago

Log in to reply

My friend, x 0.576344668583924 x \approx 0.576344668583924 , r = 0.576344668583924 2 + 2 0.168807445127518 \implies r = \dfrac {0.576344668583924}{2+\sqrt 2} \approx 0.168807445127518 .

I don't think @Fletcher Mattox would make such a mistake.

Chew-Seong Cheong - 1 week, 4 days ago

169794 \Large \color{#D61F06}{169794}

Niranjan Khanderia - 1 week, 4 days ago

@Niranjan Khanderia , x 0.576344668583924 x \approx 0.576344668583924 , r = 0.576344668583924 2 + 2 0.168807445127518 \implies r = \dfrac {0.576344668583924}{2+\sqrt 2} \approx 0.168807445127518 .

I don't think @Fletcher Mattox would make such a mistake.

Chew-Seong Cheong - 1 week, 4 days ago
Zakir Husain
Mar 6, 2021

Let D F = a = B E D F A B E A F C = 1 a = C E \overline{DF}=a=\overline{BE}\because \triangle DFA \cong \triangle BEA\Rightarrow \overline{FC}=1-a=\overline{CE} a r ( D F A ) = a 2 = a r ( E B A ) ar(\triangle DFA)=\dfrac{a}{2}=ar(\triangle EBA) From Pythagoras Theorem : A F = 1 + a 2 = A E \overline{AF}=\sqrt{1+a^2}=\overline{AE} From the relation : r s = rs=\triangle where = a r e a o f t r i a n g l e , s = s e m i p e r i m e t e r , r = i n r a d i u s \triangle=area\space of \space triangle,s=semi-perimeter,r=inradius

We get that inradius of D F A = a 1 + a + 1 + a 2 = \triangle DFA=\dfrac{a}{1+a+\sqrt{1+a^2}}= inradius of E B A \triangle EBA

Similarly we can find that inradius of C F E = 1 a 2 + 2 . . . . . . . . . . [ 1 ] \triangle CFE=\dfrac{1-a}{2+\sqrt{2}}..........[1] a 1 + a + 1 + a 2 = 1 a 2 + 2 \Rightarrow \dfrac{a}{1+a+\sqrt{1+a^2}}=\dfrac{1-a}{2+\sqrt{2}} The root of the above equation can be approximated using Newton's method starting from a 0 = 1 2 a_0=\dfrac{1}{2}

Applying it twice a 0.423654168508... a\approx 0.423654168508...

From [ 1 ] [1] r 0.168807785735... r × 1 0 6 = 168807.785735 r × 1 0 6 = 168807 r\approx 0.168807785735...\Rightarrow r \times 10^6=168807.785735 \Rightarrow \lfloor r \times 10^6 \rfloor = \boxed{168807}

To be precise, r = 4 7 1 14 2 ( 3 + 53 20 2 ) r =\frac47 - \frac1{14\sqrt2}\left(3 + \sqrt{53 - 20\sqrt2} \right) .

Pi Han Goh - 3 months, 1 week ago

Log in to reply

But at last you have to approximate it till 6 digits ...

Well how you find it accurately? @Pi Han Goh

Zakir Husain - 3 months, 1 week ago

Log in to reply

a 1 + a + 1 + a 2 = 1 a 2 + 2 \Rightarrow \dfrac{a}{1+a+\sqrt{1+a^2}}=\dfrac{1-a}{2+\sqrt{2}}

Solve this equation by repeated squaring and obtain that a a is a root to the least degree polynomial 7 a 4 2 a 3 9 a 2 + 6 a 1 = 0. 7 a^4 - 2 a^3 - 9 a^2 + 6 a - 1 = 0.

Pi Han Goh - 3 months, 1 week ago
K T
Mar 9, 2021

Did it similar to Sew Seon-Cheong, found a slightly simpler expression for r: r = 6 + 2 14 + 4 2 12 + 4 2 r=\frac{6+\sqrt{2}-\sqrt{14+4\sqrt{2}}}{12+4\sqrt{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...