Given that tan 3 θ = 2 1 1 and that 4 π ≤ θ ≤ 2 π , find the value of tan θ in the form a + b , where a and b are integers, without using a calculator.
Submit the value of a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
My solution is hand-written because I find it much easier to handwrite the answer for this particular question
tan 3 θ = tan ( 3 π − x ) ( tan x ) tan ( 3 π + x ) = ( tan x ) ⋅ 1 − 3 tan 2 x 3 − tan 2 x = 2 1 1 ⇒ 1 − 3 x 2 x ( 3 − x 2 ) = 2 1 1 ⇒ 6 x − 2 x 3 = 1 1 − 3 3 x 2 ⇒ 2 x 3 − 3 3 x 2 − 6 x + 1 1 = 0 x = 2 1 i s a t r i v i a l s o l u t i o n ∴ ( x − 2 1 ) i s a f a c t o r ( x − 2 1 ) ( 2 x 3 − 3 3 x 2 − 6 x + 1 1 ) = 2 ( x 2 − 1 6 x − 1 1 ) = 0 ⇒ x 2 − 1 6 x − 1 1 = 0 F r o m Q u a d r a t i c F o r m u l a x = 2 1 6 − + 1 6 2 − 4 × ( − 1 1 ) = 2 1 6 − + 1 0 3 = 8 − + 7 5 ⇒ x ∈ { 8 + 7 5 , 8 − 7 5 , 0 . 5 } ∵ 4 π ≤ θ ≤ 2 π ⇒ 1 ≤ tan θ ⇒ 1 ≤ x ⇒ x = 8 + 7 5 ⇒ a = 8 , b = 7 5 ⇒ a + b = 7 5 + 8 = 8 3
Woah that's fast.. under 7 minutes... thanks for your solution in latex 😀
Problem Loading...
Note Loading...
Set Loading...