Use Your Identities!

Algebra Level 2

x y = 7 x + y = 5 x 3 + y 3 = ? \Large\begin{aligned} \color{#D61F06}{x}\color{#3D99F6}{y} &= 7 \\ \color{#D61F06}{x}+\color{#3D99F6}{y} &= 5 \\ \color{#D61F06}{x}^3+\color{#3D99F6}{y}^3 &= \ \color{#20A900}{?} \end{aligned}


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

x 3 + y 3 = ( x + y ) ( x 2 + y 2 x y ) x^3+y^3=(x+y)(x^2+y^2-xy)
x 3 + y 3 = ( x + y ) [ ( x + y ) 2 3 x y ] x^3+y^3=(x+y)[(x+y)^2-3xy]
x 3 + y 3 = 5 × 4 = 20 x^3+y^3=5×4=\boxed{20}

This solution makes sense, but..

If x+y = 5, then isn't the maximum value for xy 6.25? I'm confused

Rishy Fishy - 4 years, 11 months ago

Log in to reply

No, it is not stated that x x and y y are real values. They are complex in this case.

Sharky Kesa - 4 years, 11 months ago
Kim Lehi Alterado
Jan 18, 2016

Okay, so we have this identity: ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 (x+y)^{3}=x^{3}+3x^{2}y+3xy^{2}+y^{3} Here, we replace ( x + y ) 3 (x+y)^{3} with 125 because x + y = 5 x+y=5 . So, 125 = x 3 + 3 x 2 y + 3 x y 2 + y 3 125=x^{3}+3x^{2}y+3xy^{2}+y^{3} 125 = x 3 + y 3 + 3 x 2 y + 3 x y 2 125=x^{3}+y^{3}+3x^{2}y+3xy^{2} Note: 3 x 2 y + 3 x y 2 = 3 x y ( x + y ) 3x^{2}y+3xy^{2}=3xy(x+y) and that implies 3 × 7 × ( 5 ) = 105 3 \times 7 \times (5)=105 125 = x 3 + y 3 + 105 125=x^{3}+y^{3}+105 125 105 = x 3 + y 3 125-105=x^{3}+y^{3} Therefore, x 3 + y 3 = 20 x^{3}+y^{3}=\boxed{20}

x = 1/2 (5+i sqrt(3)), y = 1/2 (5-i sqrt(3))

Russ Blake - 4 years, 9 months ago
Sravanth C.
Jan 15, 2016

We know that; ( x + y ) 3 = x 3 + y 3 + 3 x y ( x + y ) (\large\color{#D61F06}x+\color{#3D99F6}y)^{3}=\color{#D61F06}x^{3}+\color{#3D99F6}y^{3}+3\color{#D61F06}x\color{#3D99F6}y(\color{#D61F06}x+\color{#3D99F6}y) 5 3 = x 3 + y 3 + 3 × 7 × 5 x 3 + y 3 = 125 105 x 3 + y 3 = 20 \large\therefore 5^{3}=\color{#D61F06}x^{3}+\color{#3D99F6}y^{3}+3\times7\times 5\\\large\color{#D61F06}x^{3}+\color{#3D99F6}y^{3}=125-105\\\large\color{#D61F06}x^{3}+\color{#3D99F6}y^{3}=\boxed{20}

Hence the answer is 20 20 .

Shawn Pollock
Jul 30, 2016

Some very elegant solutions by working out (x+y)^3, but don't forget you could also show x = 7/y and x = 5-y so 7/y = 5-y or y^2-5y+7=0, solve for y, then solve for x. Harder solution, much less elegant, but perfectly legit (especially if you note that y!=0)

Yash Jain
Jan 15, 2016

Using the identity;

( x + y ) 3 = x 3 + y 3 + 3 x y ( x + y ) (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)

5 3 = x 3 + y 3 + 3.7. ( 5 ) 5^{3}=x^{3}+y^{3}+3.7.(5)

x 3 + y 3 = 125 105 x^{3}+y^{3}=125-105

x 3 + y 3 = 20 x^{3}+y^{3}=20

Thus, the answer is 20 20 .

Murugan Parvathi
Jan 14, 2016

a^3 + b^3 = (a + b)^3 - 3 a b (a + b) ...enter the values.....5^3-3(5)(7)=125-105=20

King James Palma
Jan 12, 2016

xy=7 x+y=5

Then xy(x+y)=35

x^2y+xy^2=35

and (x+y)^3=125

x^3+3(x^2y+xy^2)+y^3=125

x^3+3(35)+y^3=125

x^3+y^3+105=125

x^3+y^3=20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...