Tricky 2

Algebra Level 4

Let a , b , c a,b,c be positive real numbers such that a + b + c = 3 a+b+c=3 . If the minimal value of a b c + 12 a b + b c + c a abc+\dfrac{12}{ab+bc+ca} is A A , what is A 5 \dfrac{A}{5} ?

3 4 2 1 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Reynan Henry
Jan 14, 2017

We use a well-known inequality a b c ( a + b c ) ( b + c a ) ( c + a b ) abc\ge (a+b-c)(b+c-a)(c+a-b)

a b c ( a + b c ) ( b + c a ) ( c + a b ) = ( 3 2 a ) ( 3 2 b ) ( 3 2 c ) = 27 18 ( a + b + c ) + 12 ( a b + b c + c a ) 8 a b c 9 a b c 27 54 + 12 ( a b + b c + c a ) a b c 4 ( a b + b c + c a ) 3 3 \begin{aligned} abc&\ge (a+b-c)(b+c-a)(c+a-b)\\ &=(3-2a)(3-2b)(3-2c)\\ &=27 -18(a+b+c)+12(ab+bc+ca)-8abc \\ 9abc&\ge 27-54+12(ab+bc+ca) \\ abc&\ge \frac{4(ab+bc+ca)}{3}-3\end{aligned}

so

a b c + 12 a b + b c + c a 4 ( a b + b c + c a ) 3 3 + 12 a b + b c + c a 8 3 = 5 \begin{aligned}abc+\frac{12}{ab+bc+ca}&\ge \frac{4(ab+bc+ca)}{3}-3 + \frac{12}{ab+bc+ca}\\ &\ge 8 -3\\ &= 5\end{aligned} by AM-GM. Hence the asnwer is 1 1

You need to add the fact that all these inequalities are in fact equalities when a = b = c = 1 a=b=c=1 , so that 5 5 is not just a lower bound for your expression, but in fact the minimum value.

Mark Hennings - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...