Tricky Area II

Calculus Level 5

α β 2 π ( 1 4 ! ) 2 \large \frac{\alpha}{\beta}\sqrt{\frac{2}{\pi}}\left(\frac{1}{4} !\right)^2

If the area bounded by the curve y = 1 x 2 + 1 x 2 + 1 x 2 + y=\dfrac1{x^2+\frac1{x^2+\frac1{x^2+\ddots}}} and the x x -axis is given above, where α \alpha and β \beta are positive coprime integers, find α + β \alpha+\beta .


Try another similar problem: Tricky Area


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 12, 2017

Consider y y as follows:

y = 1 x 2 + 1 x 2 + 1 x 2 + y = 1 x 2 + y y 2 + x 2 y 1 = 0 Solving the quadratic equation for y y = x 4 + 4 x 2 2 \begin{aligned} y & = \frac 1{x^2+\frac 1{x^2+\frac 1{x^2 + \ddots}}} \\ y & = \frac 1{x^2 + y} \\ y^2 + x^2y - 1& = 0 & \small \color{#3D99F6} \text{Solving the quadratic equation for }y \\ \implies y & = \frac {\sqrt{x^4+4}-x^2}2 \end{aligned}

We note that y y is even as shown in the figure. Now again consider:

y = 1 x 2 + y x 2 = 1 y y x = 1 y y y = \dfrac 1{x^2+y} \implies x^2 = \dfrac 1y - y \implies x = \sqrt{\dfrac 1y-y}

The area under the curve is given by A = y d x = 2 0 y d x = 2 0 1 x d y A = \displaystyle \int_{-\infty}^\infty y \ dx = 2 \int_0^\infty y \ dx = 2 \int_0^1 x \ dy . Therefore,

A = 2 0 1 1 y y d y = 2 0 1 1 y 2 y d y = 2 0 1 y 1 2 ( 1 y 2 ) 1 2 d y Note that beta function B ( m , n ) = 2 0 1 x 2 m 1 ( 1 x 2 ) n 1 d x = B ( 1 4 , 3 2 ) = Γ ( 1 4 ) Γ ( 3 2 ) Γ ( 7 4 ) where Γ ( s ) is gamma function. = 4 2 Γ ( 9 4 ) Γ ( 1 4 ) Γ ( 3 2 ) π Γ ( 7 2 ) Using Γ ( 2 z ) = 2 2 z 1 Γ ( z ) Γ ( z + 1 2 ) π = 4 2 5 4 Γ ( 5 4 ) 4 Γ ( 5 4 ) Γ ( 3 2 ) π 5 2 3 2 Γ ( 3 2 ) Using Γ ( 1 + z ) = z Γ ( z ) = 16 3 2 π Γ ( 5 4 ) 2 Note that Γ ( 1 + z ) = z ! = 16 3 2 π ( 1 4 ! ) 2 \begin{aligned} A & = 2 \int_0^1 \sqrt{\frac 1y - y} dy \\ & = 2 \int_0^1 \sqrt{\frac {1 - y^2}y} dy \\ & = 2 \int_0^1 y^{-\frac 12} \left(1-y^2\right)^\frac 12 dy & \small \color{#3D99F6} \text{Note that beta function }B(m,n) = 2\int_0^1 x^{2m-1}\left(1-x^2\right)^{n-1} dx \\ & = B \left(\frac 14, \frac 32 \right) \\ & = \frac {\Gamma \left(\frac 14 \right)\Gamma \left(\frac 32 \right)}{\color{#D61F06}\Gamma \left(\frac 74\right)} & \small \color{#3D99F6} \text{where }\Gamma (s) \text{ is gamma function.} \\ & = \frac {{\color{#D61F06}4\sqrt 2 \Gamma \left(\frac 94 \right)}\Gamma \left(\frac 14 \right)\Gamma \left(\frac 32 \right)}{\color{#D61F06}\sqrt \pi \Gamma \left(\frac 72 \right)} & \small \color{#D61F06} \text{Using }\Gamma (2z) = \frac {2^{2z-1}\Gamma (z) \Gamma \left(z+\frac 12\right)}{\sqrt \pi} \\ & = \frac {4\sqrt 2 \cdot {\color{#3D99F6}\frac 54 \Gamma \left(\frac 54 \right)} \cdot {\color{#3D99F6} 4 \Gamma \left(\frac 54 \right)} \Gamma \left(\frac 32 \right)}{\sqrt \pi \cdot \color{#3D99F6} \frac 52 \cdot \frac 32 \Gamma \left(\frac 32 \right)} & \small \color{#3D99F6} \text{Using }\Gamma (1+z) = z \Gamma (z) \\ & = \frac {16}3 \sqrt{\frac 2 \pi} {\color{#3D99F6} \Gamma \left(\frac 54 \right)}^2 & \small \color{#3D99F6} \text{Note that }\Gamma (1+z) = z! \\ & = \frac {16}3 \sqrt{\frac 2 \pi} \left({\color{#3D99F6}\frac 14 !}\right)^2 \end{aligned}

α + β = 16 + 3 = 19 \implies \alpha + \beta = 16 + 3 = \boxed{19}


References:

First Last
Dec 8, 2017

Rewriting the function as y = 1 x 2 + y y=\frac1{x^2+y} And seeing the area, A \textbf{A} as

The function can be written in terms of x x and then integrated from 0 to 1 just as a form of the beta function.

x = 1 y y = 1 y 2 y \displaystyle x=\sqrt{\frac1{y}-y}=\frac{\sqrt{1-y^2}}{\sqrt{y}}

A = 2 0 1 1 y 2 y d y Note: β ( a , b ) = 2 0 1 x 2 a 1 ( 1 x 2 ) b 1 d x \displaystyle\textbf{A}=2\int_0^1\frac{\sqrt{1-y^2}}{\sqrt{y}}dy\quad\quad\text{Note: }\beta(a,b)=2\int_0^1x^{2a-1}(1-x^2)^{b-1}dx

A = β ( 1 4 , 3 2 ) = 16 3 2 π Γ ( 5 4 ) 2 \textbf{A}=\beta(\frac1{4},\frac3{2})=\frac{16}{3}\sqrt{\frac2{\pi}}\Gamma(\frac5{4})^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...