Tricky BEAST!!!!

Calculus Level 5

Evaluate

2 2010 0 1 x 1004 ( 1 x ) 1004 d x 0 1 x 1004 ( 1 x 2010 ) 1004 d x . \frac {\displaystyle{ { 2 }^{ 2010 }\int _{ 0 }^{ 1 }{ { x }^{ 1004 } } ({ 1-x) }^{ 1004 }dx} }{\displaystyle{ \int _{ 0 }^{ 1 }{ { x }^{ 1004 } } { (1-{ x }^{ 2010 } })^{ 1004 }dx} }.

You may try its simpler version first WOWSOME


The answer is 4020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S o r r y f o r t h e i n c o n v e n i e n c e , i t s a n s w e r s h o u l d b e 4020. I v e a n a n o t h e r s o l u t i o n f o r t h i s q u e s t i o n . S o l v i n g n u m e r a t o r : L e t x = s i n 2 θ d x = 2 s i n θ . c o s θ . d θ t h e r e f o r e , n u m e r a t o r t u r n s o u t t o b e : 2 2011 0 π 2 s i n 2009 θ . c o s 2009 θ . d θ 4 0 π 2 s i n 2009 2 θ . d θ . . . . . . . . . . . ( 1 ) N o w s o l v i n g d e n o m i n a t o r : L e t x 1005 = s i n θ 1005 x 1004 . d x = c o s θ . d θ x 1004 . d x = c o s θ . d θ 1005 t h e r e f o r e , d e n o m i n a t o r t u r n s o u t t o b e 1 1005 0 π 2 c o s 2009 θ . d θ . . . . . . . . ( 2 ) N o w s u b s t i t u t i n g v a l u e s : 4020 0 π 2 s i n 2009 2 θ . d θ 0 π 2 c o s 2009 θ . d θ = 4020 Sorry\quad for\quad the\quad inconvenience,\quad its\quad answer\quad should\quad be\quad 4020.\\ I've\quad an\quad another\quad solution\quad for\quad this\quad question.\\ Solving\quad numerator:\\ Let\quad x={ sin^{ 2 }\theta }\\ dx=2sin\theta .cos\theta .d\theta \\ therefore,\quad numerator\quad turns\quad out\quad to\quad be:\\ { 2 }^{ 2011 }\int _{ 0 }^{ \frac { \pi }{ 2 } }{ sin^{ 2009 } } \theta .{ cos }^{ 2009 }\theta .d\theta \\ 4\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2009 } } 2\theta .d\theta \quad ...........(1)\\ Now\quad solving\quad denominator:\\ Let\quad { x }^{ 1005 }=sin\theta \\ 1005{ x }^{ 1004 }.dx=cos\theta .d\theta \\ { x }^{ 1004 }.dx=\frac { cos\theta .d\theta }{ 1005 } \\ therefore,\quad denominator\quad turns\quad out\quad to\quad be\quad \\ \frac { 1 }{ 1005 } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { cos }^{ 2009 } } \theta .d\theta \quad ........(2)\\ \\ Now\quad substituting\quad values:\\ \frac { 4020\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2009 } } 2\theta .d\theta }{ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { cos }^{ 2009 } } \theta .d\theta } =\quad 4020\quad

Mvs Saketh
Nov 9, 2014

My method might be long... i first converted lower integral into a form where gamma formula could be used.. then i applied gamma formula up and down and cancelled all terms and released the several 2s to cancel the already present 2^(2010) to leave 4.

Is there a shorter way?

The problem asks us to compute 2 2010 0 1 x 1004 ( 1 x ) 1004 d x 0 1 x 1004 ( 1 x 2010 ) 1004 d x . \frac{2^{2010} \int_0^1 x^{1004} (1 - x)^{1004} \: dx}{\int_0^1 x^{1004} (1 - x^{2010})^{1004} \: dx}. More generally, we compute 2 2 n 0 1 x n 1 ( 1 x ) n 1 d x 0 1 x n 1 ( 1 x 2 n ) n 1 d x , \frac{2^{2n} \int_0^1 x^{n - 1} (1 - x)^{n - 1} \: dx}{\int_0^1 x^{n - 1} (1 - x^{2n})^{n - 1} \: dx}, where n n is a positive integer.

By the Beta function , 0 1 x n 1 ( 1 x ) n 1 d x = ( n 1 ) ! ( n 1 ) ! ( 2 n 1 ) ! . \int_0^1 x^{n - 1} (1 - x)^{n - 1} \: dx = \frac{(n - 1)! \cdot (n - 1)!}{(2n - 1)!}.

For the denominator, let y = x 2 n y = x^{2n} . Then x = y 1 / ( 2 n ) x = y^{1/(2n)} , and d x = 1 2 n y 1 / ( 2 n ) 1 d y dx = \frac{1}{2n} y^{1/(2n) - 1} \: dy , so 0 1 x n 1 ( 1 x 2 n ) n 1 d x = 0 1 y ( n 1 ) / ( 2 n ) ( 1 y ) n 1 1 2 n y 1 / ( 2 n ) 1 d y = 1 2 n 0 1 y 1 / 2 ( 1 y ) n 1 d y . \begin{aligned} &\int_0^1 x^{n - 1} (1 - x^{2n})^{n - 1} \: dx \\ &= \int_0^1 y^{(n - 1)/(2n)} (1 - y)^{n - 1} \cdot \frac{1}{2n} y^{1/(2n) - 1} \: dy \\ &= \frac{1}{2n} \int_0^1 y^{-1/2} (1 - y)^{n - 1} \: dy. \end{aligned}

Again by the Beta function, this is equal to 1 2 n Γ ( 1 2 ) ( n 1 ) ! Γ ( n + 1 2 ) . \frac{1}{2n} \cdot \frac{\Gamma (\frac{1}{2}) \cdot (n - 1)!}{\Gamma (n + \frac{1}{2})}. From the identity Γ ( t + 1 ) = t Γ ( t ) \Gamma(t + 1) = t \Gamma(t) , Γ ( 1 2 ) ( n 1 ) ! Γ ( n + 1 2 ) = ( n 1 ) ! Γ ( 1 2 ) Γ ( 3 2 ) Γ ( 3 2 ) Γ ( 5 2 ) Γ ( n 1 2 ) Γ ( n + 1 2 ) = ( n 1 ) ! 2 1 2 3 2 2 n 1 = ( n 1 ) ! 2 n 1 3 5 ( 2 n 1 ) = ( n 1 ) ! 2 n 2 4 ( 2 n ) 1 2 ( 2 n ) = ( n 1 ) ! 2 n 2 n n ! ( 2 n ) ! . \begin{aligned} \frac{\Gamma (\frac{1}{2}) \cdot (n - 1)!}{\Gamma (n + \frac{1}{2})} &= (n - 1)! \cdot \frac{\Gamma(\frac{1}{2})}{\Gamma (\frac{3}{2})} \cdot \frac{\Gamma(\frac{3}{2})}{\Gamma (\frac{5}{2})} \dotsm \frac{\Gamma(n - \frac{1}{2})}{\Gamma (n + \frac{1}{2})} \\ &= (n - 1)!\cdot \frac{2}{1} \cdot \frac{2}{3} \dotsm \frac{2}{2n - 1} \\ &= (n - 1)! \cdot \frac{2^n}{1 \cdot 3 \cdot 5 \dotsm (2n - 1)} \\ &= (n - 1)! \cdot \frac{2^n \cdot 2 \cdot 4 \dotsm (2n)}{1 \cdot 2 \dotsm (2n)} \\ &= (n - 1)! \cdot \frac{2^n \cdot 2^n \cdot n!}{(2n)!}. \end{aligned}

Therefore, 2 2 n 0 1 x n 1 ( 1 x ) n 1 d x 0 1 x n 1 ( 1 x 2 n ) n 1 d x = 2 2 n ( n 1 ) ! ( n 1 ) ! ( 2 n 1 ) ! 1 2 n 2 2 n ( n 1 ) ! n ! ( 2 n ) ! = 2 n ( n 1 ) ! ( 2 n ) ! n ! ( 2 n 1 ) ! = 4 n . \begin{aligned} \frac{2^{2n} \int_0^1 x^{n - 1} (1 - x)^{n - 1} \: dx}{\int_0^1 x^{n - 1} (1 - x^{2n})^{n - 1} \: dx} &= \frac{\frac{2^{2n} \cdot (n - 1)! \cdot (n - 1)!}{(2n - 1)!}}{\frac{1}{2n} \cdot \frac{2^{2n} \cdot (n - 1)! \cdot n!}{(2n)!}} \\ &= \frac{2n \cdot (n - 1)! \cdot (2n)!}{n! \cdot (2n - 1)!} \\ &= 4n. \end{aligned}

For n = 1005 n = 1005 , this is 4 1005 = 4020 4 \cdot 1005 = 4020 .

Jon Haussmann - 6 years, 7 months ago

Log in to reply

Thanks. I have updated the answer accordingly.

Calvin Lin Staff - 6 years, 7 months ago

I don't think so there is any short method for this question. I too have solved this using gamma formula.

Kïñshük Sïñgh - 6 years, 7 months ago

Log in to reply

Can you review Jon's comment and let me know if anything is wrong with it?

Calvin Lin Staff - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...