Tricky Calculus Question II

Calculus Level 4

π 2 π 2 k 1 + cos ( a ) sin ( x ) d x = π sin ( a ) \large \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{k}{1+\cos(a)\sin(x)}dx= \frac{\pi }{\sin(a)}

The equation above holds true for constants a a and k k . Find k k .

Note: Consider 0 < a < 1 2 π 0 < a < \tfrac12\pi .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jul 21, 2018

The substitution t = tan 1 2 x t = \tan\tfrac12x gives I = 1 2 π 1 2 π d x 1 + cos a sin x = 1 1 1 1 + cos a 2 t 1 + t 2 2 d t 1 + t 2 = 2 1 1 d t 1 + 2 cos a t + t 2 = 2 1 1 1 ( t + cos a ) 2 + sin 2 a d t = 2 sin a [ tan 1 t + cos a sin a ] 1 1 = 2 sin a ( tan 1 ( cot 1 2 a ) + tan 1 ( tan 1 2 a ) ) \begin{aligned} I \; = \; \int_{-\tfrac12\pi}^{\tfrac12\pi} \frac{dx}{1+ \cos a \sin x} & = \; \int_{-1}^1 \frac{1}{1 + \cos a \frac{2t}{1+t^2}} \frac{2\,dt}{1+t^2} \; = \; 2\int_{-1}^1 \frac{dt}{1 + 2\cos a t + t^2}\\ & = \; 2\int_{-1}^1 \frac{1}{(t+\cos a)^2 + \sin^2a}\,dt \; = \; \frac{2}{|\sin a|}\Big[\tan^{-1}\frac{t + \cos a}{|\sin a|}\Big]_{-1}^1 \\ & = \; \frac{2}{|\sin a|}\Big(\tan^{-1}\big(\cot\tfrac12a\big) + \tan^{-1}\big(\tan\tfrac12a\big)\Big) \end{aligned} Just to keep things simple, let us consider this integral for 0 < a < 1 2 π 0 < a < \tfrac12\pi . Then I = 2 sin a ( 1 2 π 1 2 a + 1 2 a ) = π sin a I \; = \; \frac{2}{\sin a}\big(\tfrac12\pi - \tfrac12a + \tfrac12a\big) \; = \; \frac{\pi}{\sin a} which makes the answer k = 1 k = \boxed{1} .

Rohan Shinde
Dec 4, 2018

I = π 2 π 2 d x 1 + cos a sin x = 0 π 2 d x 1 + cos a sin x + π 2 0 d x 1 + cos a sin x = 0 π 2 2 d x 1 cos 2 a sin 2 x = 0 π 2 2 csc 2 x d x cot 2 x + 1 cos 2 a I= \int_{\frac {-\pi}{2}}^{\frac {\pi}{2}} \frac {dx}{1+\cos a\sin x}=\int_{0}^{\frac {\pi}{2}} \frac {dx}{1+\cos a\sin x}+\int_{\frac {-\pi}{2}}^{0} \frac {dx}{1+\cos a\sin x}=\int_{0}^{\frac {\pi}{2}} \frac {2dx}{1-\cos ^2 a\sin ^2 x}=\int_0^{\frac {\pi}{2}} \frac {2\csc ^2 x dx}{\cot^2 x +1-\cos^2 a}

Substituting cot x = u \cot x=u we get I = 0 2 d u u 2 + sin 2 a = π sin a I=\int_0^{\infty} \frac {2du}{u^2+ \sin^2 a}= \frac {\pi}{\sin a}

Hence k = 1 k=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...