∫ − 2 π 2 π 1 + cos ( a ) sin ( x ) k d x = sin ( a ) π
The equation above holds true for constants a and k . Find k .
Note: Consider 0 < a < 2 1 π .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 2 − π 2 π 1 + cos a sin x d x = ∫ 0 2 π 1 + cos a sin x d x + ∫ 2 − π 0 1 + cos a sin x d x = ∫ 0 2 π 1 − cos 2 a sin 2 x 2 d x = ∫ 0 2 π cot 2 x + 1 − cos 2 a 2 csc 2 x d x
Substituting cot x = u we get I = ∫ 0 ∞ u 2 + sin 2 a 2 d u = sin a π
Hence k = 1
Problem Loading...
Note Loading...
Set Loading...
The substitution t = tan 2 1 x gives I = ∫ − 2 1 π 2 1 π 1 + cos a sin x d x = ∫ − 1 1 1 + cos a 1 + t 2 2 t 1 1 + t 2 2 d t = 2 ∫ − 1 1 1 + 2 cos a t + t 2 d t = 2 ∫ − 1 1 ( t + cos a ) 2 + sin 2 a 1 d t = ∣ sin a ∣ 2 [ tan − 1 ∣ sin a ∣ t + cos a ] − 1 1 = ∣ sin a ∣ 2 ( tan − 1 ( cot 2 1 a ) + tan − 1 ( tan 2 1 a ) ) Just to keep things simple, let us consider this integral for 0 < a < 2 1 π . Then I = sin a 2 ( 2 1 π − 2 1 a + 2 1 a ) = sin a π which makes the answer k = 1 .