Tricky chain rule

Calculus Level 4

The function y = f ( x ) y=f(x) satisfies the following:

4 x d 2 y d x 2 + 4 x ( d y d x ) 2 + 2 d y d x 1 = 0 4x\frac{d^2y}{dx^2} + 4x\left(\frac{dy}{dx}\right)^2 + 2\frac{dy}{dx} -1 = 0

It is further given that x = t 2 x = t^2 and y = ln ( v ) y = \ln(v) . What is d 2 v d t 2 \dfrac{d^2v}{dt^2} ?

v v v 2 v^2 1 v 2 \frac{1}{v^2} 1 v \frac{1}{v}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 27, 2018

Given that x = t 2 x=t^2 and y = ln v y = \ln v :

d y d x = d y d v × d v d t × d t d x = 1 v × d v d t × 1 2 t = 1 2 v t ( d v d t ) d 2 y d x 2 = d d t ( 1 2 v t ( d v d t ) ) d t d x = 1 4 t ( ( 1 v 2 t ( d v d t ) 1 v t 2 ) d v d t + 1 v t ( d 2 v d t 2 ) ) = 1 4 x v ( d 2 v d t 2 ) 1 4 x v 2 ( d v d t ) 2 1 4 x v t ( d v d t ) \begin{aligned} \frac {dy}{dx} & = \frac {dy}{dv} \times \frac {dv}{dt} \times \frac {dt}{dx} = \frac 1v \times \frac {dv}{dt} \times \frac 1{2t} = \frac 1{2vt}\left(\frac {dv}{dt}\right) \\ \frac {d^2y}{dx^2} & = \frac d{dt} \left(\frac 1{2vt}\left(\frac {dv}{dt}\right)\right) \frac {dt}{dx} \\ & = \frac 1{4t} \left(\left(-\frac 1{v^2t}\left(\frac {dv}{dt}\right) - \frac 1{vt^2}\right)\frac {dv}{dt} +\frac 1{vt}\left(\frac {d^2v}{dt^2}\right)\right) \\ & = \frac 1{4xv}\left(\frac {d^2v}{dt^2}\right) - \frac 1{4xv^2}\left(\frac {dv}{dt}\right)^2 - \frac 1{4xvt}\left(\frac {dv}{dt}\right) \end{aligned}

Therefore,

4 x d 2 y d x 2 + 4 x ( d y d x ) 2 + 2 d y d x 1 = 0 1 v ( d 2 v d t 2 ) 1 v 2 ( d v d t ) 2 1 v t ( d v d t ) + 4 x ( 1 2 v t ( d v d t ) ) 2 + 2 2 v t ( d v d t ) = 1 1 v ( d 2 v d t 2 ) = 1 d 2 v d t 2 = v \begin{aligned} 4x\frac{d^2y}{dx^2} + 4x\left(\frac{dy}{dx}\right)^2 + 2\frac{dy}{dx} -1 & = 0 \\ \frac 1{v}\left(\frac {d^2v}{dt^2}\right) - \frac 1{v^2}\left(\frac {dv}{dt}\right)^2 - \frac 1{vt}\left(\frac {dv}{dt}\right) + 4x\left(\frac 1{2vt}\left(\frac {dv}{dt}\right)\right)^2 + \frac 2{2vt}\left(\frac {dv}{dt}\right) & = 1 \\ \frac 1{v}\left(\frac {d^2v}{dt^2}\right) & = 1 \\ \implies \frac {d^2v}{dt^2} & = \boxed v \end{aligned}

Russell Ngo
Aug 26, 2018

d v d t = d v d y d y d x d x d t \frac{dv}{dt} = \frac{dv}{dy}\frac{dy}{dx}\frac{dx}{dt}

Note that:

y = l n ( v ) y=ln(v) \Leftrightarrow v = e y v=e^y \Leftrightarrow d v d y = e y = v \frac{dv}{dy} = e^y = v

f = d y d x f' = \frac{dy}{dx} ; d x d t = 2 t \frac{dx}{dt}=2t

Putting those together:

\Rightarrow d v d t = v f ( 2 t ) \frac{dv}{dt} = vf'(2t)

\Rightarrow d 2 v d t 2 = d d t ( v f ( 2 t ) ) = d v d t f ( 2 t ) + v d f d t ( 2 t ) + v f d ( 2 t ) d t \frac{d^2v}{dt^2} = \frac{d}{dt}(vf'(2t)) = \frac{dv}{dt}f'(2t) + v\frac{df'}{dt}(2t) + vf'\frac{d(2t)}{dt}

\Rightarrow d 2 v d t 2 = v ( f . 2 t ) 2 + v f ( 2 t ) 2 + 2 v f = 2 v ( 2 t 2 f 2 + 2 t 2 f + f ) \frac{d^2v}{dt^2} = v(f'.2t)^2 +vf''(2t)^2 + 2vf' = 2v(2t^2f'^2 + 2t^2f'' +f')

Now come back to the given equation:

4 x d 2 y d x 2 + 4 x ( d y d x ) 2 + 2 d y d x 1 = 0 4x\frac{d^2y}{dx^2} + 4x(\frac{dy}{dx})^2 + 2\frac{dy}{dx} -1 =0 \Leftrightarrow 4 t 2 f + 4 t 2 f 2 + 2 f = 1 4t^2f'' +4t^2f'^2 +2f'=1 \Leftrightarrow 2 t 2 f 2 + 2 t 2 f + f = 1 2 2t^2f'^2 + 2t^2f'' + f' =\frac{1}{2}

Hence: d 2 v d t 2 = 2 v ( 1 2 ) = v \frac{d^2v}{dt^2} = 2v(\frac{1}{2}) = v

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...