Tricky Definite Integral

Calculus Level 5

0 3 1 1 + x 2 sin 1 ( 2 x 1 + x 2 ) d x = ? \large \int _0^{\sqrt{3}}\frac{1}{1+x^2}\sin ^{-1}\left(\frac{2x}{1+x^2}\right) \, dx = \, ?

3 π 2 36 \frac{3\pi ^2}{36} π 2 4 \frac{\pi ^2}{4} 7 π 2 72 \frac{7\pi ^2}{72} π 2 9 \frac{\pi ^2}{9}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 26, 2017

Relevant wiki: Half Angle Tangent Substitution

Similar solution with @Benny Joseph 's

I = 0 3 1 1 + x 2 sin 1 ( 2 x 1 + x 2 ) d x Let x = tan θ d x = sec 2 θ d θ = 0 π 3 sec 2 θ 1 + tan 2 θ sin 1 ( 2 tan θ 1 + tan 2 θ ) d θ Half angle tangent substitution: sin u = 2 tan u 2 1 + tan 2 u 2 = 0 π 3 sec 2 θ sec 2 θ sin 1 ( sin 2 θ ) d θ Let ϕ = 2 θ d ϕ = 2 d θ = 1 2 0 2 π 3 sin 1 ( sin ϕ ) d ϕ Note that sin 1 u is defined [ π 2 , π 2 ] = 1 2 ( 0 π 2 sin 1 ( sin ϕ ) d ϕ + π 3 π 2 sin 1 ( sin ϕ ) d ϕ ) = 1 2 ( 0 π 2 ϕ d ϕ + π 3 π 2 ϕ d ϕ ) = 1 2 ( ϕ 2 2 0 π 2 + ϕ 2 2 π 3 π 2 ) = 1 4 ( π 2 4 + π 2 4 π 2 9 ) = 7 π 2 72 \begin{aligned} I & = \int_0^{\sqrt 3} \frac 1{1+x^2} \sin^{-1} \left(\frac {2x}{1+x^2}\right) dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int_0^\frac \pi 3 \frac {\sec^2 \theta}{1+\tan^2 \theta} \sin^{-1} \left(\frac {2\tan \theta}{1+\tan^2 \theta}\right) d\theta & \small \color{#3D99F6} \text{Half angle tangent substitution: }\sin u = \dfrac {2\tan \frac u2}{1+ \tan^2 \frac u2} \\ & = \int_0^\frac \pi 3 \frac {\sec^2 \theta}{\sec^2 \theta} \sin^{-1} \left(\sin {\color{#3D99F6}2 \theta} \right) \ d\theta & \small \color{#3D99F6} \text{Let }\phi = 2 \theta \implies d \phi = 2 \ d\theta \\ & = \frac 12 \int_0^{\color{#D61F06}\frac {2\pi} 3} \sin^{-1} \left(\sin {\color{#3D99F6}\phi} \right) \ d\phi & \small \color{#D61F06} \text{Note that }\sin^{-1} u \text{ is defined } \in \left[-\frac \pi 2, \frac \pi 2\right] \\ & = \frac 12 \left(\int_{\color{#D61F06}0} ^{\color{#D61F06}\frac \pi 2} \sin^{-1} (\sin \phi) \ d\phi + \int_{\color{#D61F06}\frac \pi 3}^{\color{#D61F06}\frac \pi 2} \sin^{-1} (\sin \phi) \ d\phi \right) \\ & = \frac 12 \left(\int_0^\frac \pi 2 \phi \ d\phi + \int_\frac \pi 3^\frac \pi 2 \phi \ d\phi \right) \\ & = \frac 12 \left(\frac {\phi^2} 2 \bigg|_0^\frac \pi 2 + \frac {\phi^2} 2 \bigg|_\frac \pi 3^\frac \pi 2 \right) \\ & = \frac 14 \left(\frac {\pi^2} 4 + \frac {\pi^2} 4 - \frac {\pi^2} 9 \right) \\ & = \boxed{\dfrac {7\pi^2}{72}} \end{aligned}

Benny Joseph
Jul 24, 2017

put tan 1 x = θ \tan ^{-1}x\ =\theta . Then the integral becomes 0 π 3 sin 1 ( sin 2 θ ) d θ \int _0^{\frac{\pi }{3}}\sin ^{-1}\left(\sin 2\theta \right)d\theta . If we notice carefully, we find sin 1 ( sin 2 θ ) \sin ^{-1}\left(\sin 2\theta \right) changes as x varies from zero to pi/3. Hence the step 0 π 4 sin 1 ( sin 2 θ ) d θ + π 4 π 3 sin 1 ( sin 2 θ ) d θ \int _0^{\frac{\pi }{4}}\sin ^{-1}\left(\sin 2\theta \right)d\theta +\int _{\frac{\pi }{4}}^{\frac{\pi }{3}}\sin ^{-1}\left(\sin 2\theta \right)d\theta which is 0 π 4 2 θ d θ + π 4 π 3 ( π 2 θ ) d θ \int _0^{\frac{\pi }{4}}2\theta d\theta +\int _{\frac{\pi }{4}}^{\frac{\pi }{3}}\left(\pi -2\theta \right)d\theta

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...