∫ 0 3 1 + x 2 1 sin − 1 ( 1 + x 2 2 x ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
put tan − 1 x = θ . Then the integral becomes ∫ 0 3 π sin − 1 ( sin 2 θ ) d θ . If we notice carefully, we find sin − 1 ( sin 2 θ ) changes as x varies from zero to pi/3. Hence the step ∫ 0 4 π sin − 1 ( sin 2 θ ) d θ + ∫ 4 π 3 π sin − 1 ( sin 2 θ ) d θ which is ∫ 0 4 π 2 θ d θ + ∫ 4 π 3 π ( π − 2 θ ) d θ
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Half Angle Tangent Substitution
Similar solution with @Benny Joseph 's
I = ∫ 0 3 1 + x 2 1 sin − 1 ( 1 + x 2 2 x ) d x = ∫ 0 3 π 1 + tan 2 θ sec 2 θ sin − 1 ( 1 + tan 2 θ 2 tan θ ) d θ = ∫ 0 3 π sec 2 θ sec 2 θ sin − 1 ( sin 2 θ ) d θ = 2 1 ∫ 0 3 2 π sin − 1 ( sin ϕ ) d ϕ = 2 1 ( ∫ 0 2 π sin − 1 ( sin ϕ ) d ϕ + ∫ 3 π 2 π sin − 1 ( sin ϕ ) d ϕ ) = 2 1 ( ∫ 0 2 π ϕ d ϕ + ∫ 3 π 2 π ϕ d ϕ ) = 2 1 ( 2 ϕ 2 ∣ ∣ ∣ ∣ 0 2 π + 2 ϕ 2 ∣ ∣ ∣ ∣ 3 π 2 π ) = 4 1 ( 4 π 2 + 4 π 2 − 9 π 2 ) = 7 2 7 π 2 Let x = tan θ ⟹ d x = sec 2 θ d θ Half angle tangent substitution: sin u = 1 + tan 2 2 u 2 tan 2 u Let ϕ = 2 θ ⟹ d ϕ = 2 d θ Note that sin − 1 u is defined ∈ [ − 2 π , 2 π ]