Tricky Equations - 2

Algebra Level 4

{ ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 ( a + 2 ) ( b + 2 ) ( c + 2 ) = 2 ( a + 3 ) ( b + 3 ) ( c + 3 ) = 3 \large \begin{cases} (a+1)(b+1)(c+1)=1 \\ (a+2)(b+2)(c+2)=2 \\ (a+3)(b+3)(c+3)=3 \end{cases}

Let a , b a,b and c c be complex number satisfying the system of equations above, find ( a + 4 ) ( b + 4 ) ( c + 4 ) (a+4)(b+4)(c+4) .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

A good solution from Budhaditya Halder in LaTex here:

We note the polynomial f ( x ) = ( x + a ) ( x + b ) ( x + c ) x f(x) = (x+a)(x+b)(x+c)-x satisfies f ( 1 ) = f ( 2 ) = f ( 3 ) = 0 f(1) = f(2)=f(3) = 0 .

f ( x ) = ( x 1 ) ( x 2 ) ( x 3 ) f ( 4 ) = 3 × 2 × 1 = 6 ( a + 4 ) ( b + 4 ) ( c + 4 ) 4 = 6 ( a + 4 ) ( b + 4 ) ( c + 4 ) = 10 \begin{aligned} \implies f(x) & = (x-1)(x-2)(x-3) \\ \implies f(4) & = 3\times 2 \times 1 = 6 \\ \implies (a+4)(b+4)(c+4) - 4 & = 6 \\ (a+4)(b+4)(c+4) & = \boxed{10} \end{aligned}


My Previous Solution

Using the Newton sums method notation for symmetric sums, we have:

{ a + b + c = S 1 a b + b c + c a = S 2 a b c = S 3 \begin{cases} a + b + c = S_1 \\ ab+bc+ca = S_2 \\ abc = S_3 \end{cases}

Then,

{ ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 S 1 + S 2 + S 3 = 0 . . . ( 1 ) ( a + 2 ) ( b + 2 ) ( c + 2 ) = 2 4 S 1 + 2 S 2 + S 3 = 6 . . . ( 2 ) ( a + 3 ) ( b + 3 ) ( c + 3 ) = 3 9 S 1 + 3 S 2 + S 3 = 24 . . . ( 3 ) \begin{cases} (a+1)(b+1)(c+1)=1 & \implies S_1+S_2+S_3 = 0 & ...(1) \\ (a+2)(b+2)(c+2)=2 & \implies 4S_1+2S_2+S_3 = -6 & ...(2) \\ (a+3)(b+3)(c+3)=3 & \implies 9S_1+3S_2+S_3 = -24 & ...(3) \end{cases}

\(\begin{array} {} (2)-(1): & 3S_1+S_2 = -6 & ...(4) \\ (3)-(2): & 5S_1+S_2 = -18 & ...(5) \\ (5)-(4): & 2S_1= -12 & \implies S_1 = -6 \\ (4): & -18 + S_2 = -6 & \implies S_2 = 12 \\ (1): & -6 + 12 + S_3 = 0 & \implies S_3 = -6 \end{array} \)

Now, we have:

( a + 4 ) ( b + 4 ) ( c + 4 ) = 4 3 + 4 2 S 1 + 4 S 2 + S 3 = 64 + 16 ( 6 ) + 4 ( 12 ) 6 = 64 96 + 48 6 = 10 \begin{aligned} (a+4)(b+4)(c+4) & = 4^3 + 4^2S_1 + 4S_2 + S_3 \\ & = 64 + 16(-6) + 4(12) - 6 \\ & = 64 - 96 + 48 - 6 \\ & = \boxed{10} \end{aligned}

f(x)=(x+a)(x+b)(x+c)-x f(1)=f(2)=f(3)=0 Hence, f(x)=(x-1)(x-2)(x-3)=(x+a)(x+b)(x+c)-x f(4)=6 So, (4+a)(4+b)(4+c)=10

Budhaditya Halder - 5 years, 1 month ago

Log in to reply

Good solution.

Chew-Seong Cheong - 5 years, 1 month ago

We have to write f(x)=k(x-1)(x-2)(x-3)

Rohan Jasani - 3 years, 5 months ago
Jun Arro Estrella
Dec 26, 2016

We can actually use method of differences here.

It's a polynomial with P ( 1 ) = 1 P(1) = 1 , , P ( 2 ) = 2 P(2)=2 , P ( 3 ) = 3 P(3)= 3

Then use the method of finite diffrences to evaluate P ( 4 ) P(4)

Let a+1=X, b+1=Y, c+1=Z. So the equation reduces to:-
(X-1)(Y-1)(Z- 1)=1. \implies XYZ - (XY+YZ+ZX) + (X+Y+Z) = 2.............( * )
XYZ=2......................................................................................................( * * )
(X+1)(Y+1)(Z+1)=3\ \ \ \implies XYZ + (XY+YZ+ZX) + (X+Y+Z) = 2............( * * * )
Adding ( * ) + ( * * * ) , (X+Y+Z)=0, ....and (XY+YZ+ZX)=0. Also XYZ=2.....( * * * * )
(a+4)(b+4)(c+4)=(X+2)(Y+2)(Z+2)= XYZ +2 * (XY+YZ+ZX) +4 * (X+Y+Z) + 8=2+0+0+8= 10 \large \color{#D61F06}{10}




mr.NIRANJAN YOUR ASSUMPTION IS a+1 = X why a+4 = X+2 ? and why xyz = 2 ? your solution is incorrect the correct solution is 21 try again!

Aziz Alasha - 4 years, 8 months ago

Log in to reply

Sorry I saw it only now. It was a mistake. It should be a+2=X, b+2=Y, c+2=Z. I think the rest is OK. I have corrected.
Thanks for pointing out my mistake.

Niranjan Khanderia - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...